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The Experiment:
Molecular Dynamics Simulations

Goal:
extract dynamical information (?) from a system

Two ways:
-equilibrium simulations
-non equilibrium simulations



MD generates the dynamical trajectories of a system 
of N particles by integrating Newton’s equations of motion. 

dynamical trajectories:
time evolution of the system in phase space
(positions(t) and velocities(t) for all the N particles)
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Core of any Molecular Dynamics program:



MD generates the dynamical trajectories of a system 
of N particles by integrating Newton’s equations of motion. 
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Intermolecular potential U:
simple, analytical function of
all atomic positions.

N coupled non-linear
differential equations

N-body problem cannot
be solved exactly for N>2 !

solved by discretizing the time
and evolving the system in
finite time steps
(atoms already discretize space)



To evolve the particles’ positions we
discretize the time evolution:

m steps of time step Δt

Approximation made to advance a time step: Taylor series
expansion of positions, velocities, accelerations.! 
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Taylor expansion of
positions, velocities and accelerations

How do we implement this to integrate newton’s?
We use finite difference methods such as the Verlet algorithm
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Compute forces, advance one step:
algorithm based on the current time position r(t)  and acceleration a(t),

and the positions at the previous step r(t-Δt)
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Adding the two equations we get rid of v(t):
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current
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acceleration

need to compute
Current forces
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Calculate force
on each particle

Move particles
by time step Δt

save positions
and velocities.

Reached number
of time steps?



What thermodynamic ensemble is produced by evolving the dynamics
with Verlet’s algorithm?

no external forces acting on the system
nor particles entering or leaving, the algorithm :

1) Conserves the energy E
2) Conserves the number of particles N
3) Conserves the volume V

The integration of Verlet’s equations yields the
microcanonical ensemble (NVE).

Other ensembles (NVT, NPT, NPH, etc) can be realized by modifying the
equations of motions.

Fluctuations depend on the thermodynamic ensemble!



Equilibrium simulations in the canonical ensemble:
Nose-Hoover thermostat coupled to the system

Purely deterministic canonical MD.
(no stochastic forces or randomizations)

The thermostat has its own degree of freedom s with
corresponding momentum ps. (imagine a piston!)

Energy flows between thermostat and system’s degrees of freedom.
Coupling time.

System
NVT bath

(System + Bath)
 together is NVE



stages of a MD experiment

INITIALIZATION
prepare initial conditions of model system.

EQUILIBRATION
Evolve this system in time by solving
newton’s equations of motion until the

properties do not change with time.

COLLECT EQUILIBRIUM DATA
Evolve this system in time by solving
newton’s equations of motion for the

system in equilibrium. Collect data vs time.

ANALYSIS
Compute observables from the data

collected

?



Atomic positions
Atomic velocities

Atomic forces
Atomic masses
Potential energy

Volume

From the eq-MD we have 
the time evolution of:

Total energy
Kinetic energy
Temperature

Pressure
Volume

Potential energy
Heat capacity

Diffusivity
Viscosity

Responses …

Radial distribution functions
Structure factors
Conformations …

thermodynamics

dynamicsstructure

We may want to compute:

Entropy
Gibbs free energy

Helmholtz free energy
Chemical potential

In italics are properties
that cannot be computed
for an individual time of
the trajectory



Some thermodynamic properties are computed as
 time averages over the equilibrium run.
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Potential Energy
The potential energy is a known function
of the coordinates for each configuration.

Time in MD is not continuous but a
succession of steps. Average is over
discrete number of steps.

To compute an average, we should
discard the equilibration (non-stationary)
part of the trajectory.
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Kinetic Energy & Temperature

Instantaneous kinetic energy is the sum
of the instantaneous atomic k.e. (computed
from particles velocities and masses)

The thermodynamic kinetic energy is a
time average of the instantaneous values of
K on an equilibrium trajectory.

The temperature is obtained from K
through the equipartition theorem
(valid because these are classical trajectories)

If center of mass of the system is fixed nc=3

Instantaneous and thermodynamic
temperatures are defined as for K.! 
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! 

P = P
ideal

+ P
excess

Pressure

Instantaneous pressure is obtained from
the virial theorem.

The calculation of the pressure requires
knowledge of forces, positions and
temperature (i.e. velocities)
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Heat Capacity

from simulations at different energy
(temperature)

We cannot define an instantaneous
value of Cv nor for any other response
function (note difference with V, E, K, T)

In canonical (NVT) simulations, the heat
capacity can be computed from the
fluctuations of total energy over an
equilibrium trajectory.

And in NVE ensemble?
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Diffusion

We compute the average over all the
particles at each time t.

For an equilibrium simulation, all times
are equivalent, so we also average over
all possible initial times.

Short t , long t
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Mean square displacement (diffusion)

Is this equation valid for all
times and circumstances?
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Mean square displacement (diffusion)

1) at short times (<1ps)
the motion is not
diffusive but ballistic.

2) Diffusion in viscous
liquids may show a
plateau due to caging
of the neighbors.

3) But at long times (long
compared with the
time for individual
displacements) it
approaches Einstein’s

tDtr 6)(2 =

Is this equation valid for all times
and circumstances?

THE ANSWER IS NO.



Dipole/Rotational correlations 
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Single molecule dipole autocorrelation
(first rank; average over all α =1, …N molecules)

Difficult to measure in experiments
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Single molecule dipole autocorrelation
(second rank; average over all α =1, …N molecules )

Can be measured by Spin Echo NMR
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Total dipole autocorrelation (first rank)

dielectric spectroscopy measures its Laplace

transform. (cross αβ terms make it different from the

single molecule above)
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Pressure correlations

Bulk viscosity
Autocorrelation of the diagonal elements
of the pressure (stress) tensor Pxx, Pyy, Pzz
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Shear viscosity
Autocorrelation of the off-diagonal
elements of the pressure (stress) tensor
Pxy, Pxz, Pyz

kinetic virial



Frequency dependent Heat Capacity

Note that the heat capacity is NOT the response to
a field perturbing the system!

We will compute:
-static  cv
-autocorrelation of E

-difficult to converge…
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(Nielsen & Dyre, 1996)

Energy fluctuations


