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e LINEAR-RESPONSE PHENOMENOLOGY

If A(t) is an externally controlled variable and B(t) the measured “response” and equilibrium corresponds to
A =0 and B = 0, linearity implies

B(t) = /jo (1At — 7)dr (1)

Causality further implies

B(t) = /000 o(t, T)A(t — T)dT . (2)

Time-translational invariance finally implies

B(t) = /000 d(T)A(t — T)dT . (3)

In steady-state periodic fields one writes A(t) = Re[A(w) exp(iwt)] and B(t) = Re[B(w) exp(iwt)]. Equation (3)
implies B(w) = ¢(w)A(w) where (exercise 4)

Blw) = / " ptyeitdt. (4)

e ENERGY BONDS

Any energetic interaction between a system and its surroundings defines an energy bond. If e(t) is the “effort”
(generalized force) and f(t) is the “flow” (generalized velocity), the product e(t)f(t) is the power transferred
from the surroundings to the system, i.e., energy per unit time. Throughout this note we shall assume (what is
usually the case) that the effort variable is invariant under time reversal whereas the flow variable changes sign.



¢ FLUCTUATION-DISSIPATION THEOREM

If the effort is externally controlled, the measured flow response (f(t)). is given by

(O = g [ GOFhactt - r. 5)

In principle the measured response is an average, thus the sharp brackets on the left-hand side. In Eq. (5)
subscript zero signals that the flow autocorrelation function refers to equilibrium conditions, i.e., e = 0. If the
flow is externally controlled, the average measured effort response (e(t))s is given by

1 oo

{e(t) s = T /s (e(0)e(T))of(t —T)dr. (6)

Note that the two equilibrium conditions, e = 0 and f = 0 respectively, usually correspond to different physical
boundary conditions.

e GENERALIZED ADMITTANCE AND IMPEDANCE

It follows from the above that the generalized admittance describing the periodic situation Y (w) = f(w)/e(w)
is given by

-7 / (F(0 T 1)

The generalized impedance Z(w) = e(w)/f(w) is given by

20) = o / " le0)e(r) e T dr (®)

e CREEP FUNCTION FORMULATION OF THE FLUCTUATION-DISSIPATION THEOREM

If ¢ is the generalized displacement defined by Ag(t) fo 7)dT, the creep function J(t) characterizes the
generalized displacement in time ¢ when a constant eﬂort eg is suddenly applied to the system at time ¢t = 0:
J(t) = (Aq(t))ey/€0. In terms of the equilibrium mean-square displacement, the fluctuation-dissipation theorem
expresses the creep function as follows (exercise 9):
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e SEVERAL ENERGY BONDS: ONSAGER RECIPROCITY

In the case of n energy bonds the fluctuation-dissipation theorem looks as follows:

0 = o X [ OG- (10



Similarly when flows are externally controlled:
I &[>
(O = gz X | teiesmase = ryar. ()

Mixed cases where some efforts and other flows are externally controlled may also be considered. Usually one
chooses one variable from each energy bond as externally controlled and the other becomes a response variable,
but this is not mandatory; any n of the 2n variables may be chosen as controlled. — Time-reversal invariance
of the fundamental equations of motion (the Schrodinger equation / Newton’s equation of motion) implies the
following symmetries:

(£:(0)fi(T))o = (£5(0)fi(T))o, (12)

and
(ei(0)e;(T))o = (e;(0)ei(7))o - (13)

For the generalized admittance and impedance matrices these identities imply symmetry of the response matrices
(Onsager reciprocity): Y;;(w) = Yj;(w) and Z;;(w) = Z;;(w).



EXERCISES

1: Consider a particle moving in the one-dimensional potential Up(x) = aw?/2. Show that for the thermal average
one has (r2)g = kpT/a. Next an external field h is coupled to the system, thus the potential is modified into
U(x) = Up(z) — ha. The average of = becomes a function of the field, denoted by (z);. Show that

8<x>h _ <CC2>0 (14)
on |,_,  ksT '
2: Consider now an arbitrary potential Up(z). Show that if U(x) = Up(x) — hx, Eq. (14) generalizes into
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Hint: Define Z = [%_exp[—BU(x)]dz where 8 = 1/kgT. Show that (z), = S7'0InZ/0h and ((Az)?) =
526210 Z/0h% .

3: Derive Eq. (4).

4: Out of a black box come two electrical wires. The voltage across the wires is denoted by U(t), the current
through the black box by I(t). Identify the effort and flow variables and write an expression for the impedance Z(w)
in terms of the voltage fluctuations across the black box when there is no current [Nyquist theorem).

5: Counsider a particle in one dimension experiencing a force F(x) deriving from a (possibly) non-linear spring.
What are the effort and flow variables in this case?

6: A liquid is immersed between two parallel plates with area A of distance d, volume V = Ad. The lower plate
is fixed to a table; the upper plate experiences an external force parallel to the table. Identify the effort and flow
variables and write an expression for the (dc) viscosity in terms of the force autocorrelation function for the case
where the upper plate is not allowed to move. FEztra: Rewrite this expression in terms of the following variable
Sy, = fV dro,.(r).

7: As is well known, most of thermodynamics may be derived from the identity T'dS = dE + pdV that contains
both the first and second law. Identify the effort and flow variables for the thermal and mechanical energy bonds to
a general thermodynamic system, respectively, referring to the case of small perturbations around equilibrium.

8: Derive the Kubo formula for the frequency-dependent conductivity

7) = g [ OOt (16)

where V' is the sample volume and J, is the sum of charge times x-velocity for all particles. What is the boundary
condition for the autocorrelation function? FExtra: Express the frequency-dependent dielectric constant in terms of
the dipole autocorrelation function.

9: Derive Eq. (9).

10: Derive the Nernst-Einstein relation for non-interacting charge carriers, p = D/kgT where p is the mobility
(average velocity over external force) and D the diffusion constant characterized by Einstein’s equation ((Ax)2(t))o =
2Dt as t — oo.
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