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ABSTRACT
It is shown that the residual entropy (entropy minus that of the ideal gas at the same temperature and density) is mostly synonymous with
the independent variable of density scaling, identifying a direct link between these two approaches. The residual entropy and the effective
hardness of interaction (itself a derivative at constant residual entropy) are studied for the Lennard-Jones monomer and dimer as well as a
range of rigid molecular models for carbon dioxide. It is observed that the density scaling exponent appears to be related to the two-body
interactions in the dilute-gas limit.
Published by AIP Publishing. https://doi.org/10.1063/5.0097088

I. INTRODUCTION

Entropy scaling has been extensively studied in recent years
(refer to Ref. 1 for a review) as a means of connecting dynam-
ics and equilibrium thermodynamics. A requirement for applying
this approach to the transport properties of real fluids is a reli-
able model for the residual entropy (the difference between the
entropy and the entropy of an ideal gas at the same temperature and
density), which is usually obtained from an empirical equation of
state (EOS), or more computationally costly molecular simulation
methods, limiting the usefulness of entropy scaling. Representing
the residual entropy straightforwardly in terms of temperature and
density would therefore be appealing and broaden the range of
fluids for which entropy scaling might be applied. The goal of this
work is to demonstrate that this is possible, and furthermore, it
reveals a heretofore unknown link between density scaling2 and
entropy scaling approaches in the entire phase diagram.

As a first demonstration of the motivation of this paper, we
overlay shear viscosity data of CO2 as a function of the indepen-
dent variable of each approach in Fig. 1. The dependent variable is
η+ = η/(ρ2/3N

√
mkBT) × (s+)2/3, where η is the shear viscosity, ρN

is the number density, m is the mass of one entity (atom or
molecule), kB is Boltzmann’s constant, T is the temperature, and
s+ is the reduced residual entropy defined later on. The viscosity
data were scaled according to the modified entropy scaling approach
introduced in Ref. 3. The density scaling exponent of 13.5 was

taken from Ref. 4. The quantity η+ combines macroscopic scaling
(a requirement for isomorph theory, see Sec. I C) and the plus-
scaling introduced in Ref. 3. We will revisit each of the elements,
but for now the key point is that the two approaches yield almost
linear relationships in semi-log coordinates.

A. Entropy scaling
The observation of a correlation between the variation of trans-

port coefficients (e.g., self-diffusion coefficient or shear viscosity)
of simple liquids and their residual entropy can be traced back
to Rosenfeld in 1977.5 In Rosenfeld’s work, simulation results for
different systems were presented and simple exponential relations
between dimensionless values of the self-diffusion coefficient or
shear viscosity and residual entropy were proposed. A fundamen-
tal observation was that in order to observe the correlations between
transport coefficients and residual entropy, the physical quantities
need to be made dimensionless by using macroscopically reduced
units.6 In macroscopically reduced units, lengths are measured in
terms of the average interparticle distance ρ−1/3N and energies in
terms of kBT. A tilde above the quantity of interest will indicate that
the quantity is expressed in macroscopically reduced units. Simi-
lar results were later found by Dzugutov,7 which was the start of a
growing interest in the entropy scaling approach. While the initial
focus was on understanding the nature of the relationship between
residual entropy and scaled transport properties, this approach has
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FIG. 1. Modified entropy scaling applied to shear viscosity data as a function of
residual entropy (top panel) and density scaling variable (bottom panel) for CO2
(open markers: selected simulation results from this work, points: experimental
data collection from Ref. 3).

been shown to be applicable to a broad range of fluids (as long as
they behave classically and do not form strong directional bonds).
The review of Dyre1 in 2018 summarized the progress in this field
up to that date. Since then, additional studies have considered
the physical basis of this approach3,8 and applied the technique to
different systems: the Lennard-Jones (LJ) fluid,9 refrigerants,10,11
and alkanes.12,13

B. Density scaling
Density scaling is trivially valid for systems interacting via

inverse-power-law (IPL) potentials of the form V(r)∝ r−n, where
r is the molecular center of mass separation. For this family of
systems, the dynamic and thermodynamic properties are not func-
tions of T and ρ independently but depend on their combination
Γ = ρn/3/T. As a consequence, the phase diagram of these systems is
one-dimensional. IPL fluids exhibit a one-to-one mapping between
Γ and residual entropy (see the supporting information of Ref. 3)
and, indeed, between Γ and all thermodynamic and transport
properties with the application of an appropriate scaling.

The density scaling approach takes a fluid of interest governed
by a non-IPL potential and expresses its macroscopically scaled
transport properties in the form X̃ = f (ρn/3/T), where X is the shear
viscosity, thermal conductivity, or self-diffusion coefficient and n
is in this case a fluid-specific constant for the entire phase dia-
gram.14 Density scaling is thus predicated on the assumption that
the effective interaction potential between molecules can be approx-
imated by V ∝ r−n. Density scaling has been investigated for a wide
range of systems, including Lennard-Jones models, modified Buck-
ingham fluids, metals,15 and flexible molecular analogs,16 and has
also proven to be useful in glass-forming liquids.17 A major con-
cern for using this approach is the evidence that the density scaling

coefficient n has been shown to be not constant both in computer
simulations18 and in experiments.19,20

Hence, how can entropy scaling and density scaling be recon-
ciled? This work demonstrates that the use of a constant exponent
has the effect of making the unique variable of density scaling a
monovariate function of residual entropy. In other words, density
scaling with a constant effective hardness and entropy scaling are
closely related.

C. Isomorph theory
Both entropy scaling and density scaling indicate that a rela-

tionship between the dynamics of fluids and their thermodynamic
properties exists (see, for instance, Fig. 1), but they do not provide a
satisfying explanation for why this is the case. Rosenfeld’s reference
to the hard sphere system in the dense fluid phase as an explanation
for the success of entropy scaling is hard to accept in gas-like phases.
The assumption that repulsion, modeled as an IPL interaction, yields
density scaling has been challenged, both with simulations and
experiments. Simulations showed that X̃ = f (ρn/3/T) is too simple
an approximation,18 and experiments19,20 indicate that, in general,
the density scaling exponent depends on the thermodynamic state
point. A way to consistently link density scaling and entropy scal-
ing is provided by isomorph theory, briefly introduced below. For
a more complete overview of the theory, we refer to Refs. 1, 21,
and 22.

According to isomorph theory, it is possible to identify regions
in the phase diagram of a given liquid in which its behavior is sim-
pler. These regions can be identified with simulations by evaluating
where the correlation coefficient RRos23 is greater than 0.9,

RRos = ⟨ΔUΔW⟩√⟨(ΔU)2⟩⟨(ΔW)2⟩ . (1)

In the definition of RRos, ΔU and ΔW are the deviations of the
instantaneous values of potential energy and virial from the aver-
age value, respectively. The ⟨⋅ ⋅ ⋅⟩ syntax indicates the average of the
argument over a canonical ensemble. The quantity RRos can also be
evaluated with experiments under some approximations, as in Fig. 3
of Ref. 24. In the RRos > 0.9 regions, the phase diagram of the sys-
tem is effectively one-dimensional and the structure and dynamics
of the system are invariant when expressed in the macroscopically
reduced units introduced earlier, i.e., along curves of constant resid-
ual entropy, which are called isomorphs. These invariances have
been verified in several works, both with computer simulations25 and
experiments.26

This way, isomorph theory provides a clear link between den-
sity scaling and entropy scaling, additionally predicting the invari-
ance of the reduced structure. The weak point of this approach is
that its validity is limited to some regions of the phase diagram and
cannot explain, for example, the validity of entropy scaling at low
densities (i.e., below the critical density).

Isomorph theory also predicts that the density scaling exponent
n/3 depends on the thermodynamic state, as confirmed by computer
simulations and experiments. The density scaling exponent is the
slope of the constant residual entropy curves and can be evaluated
from simulations in the canonical ensemble using the fluctuation
formula22

J. Chem. Phys. 157, 074501 (2022); doi: 10.1063/5.0097088 157, 074501-2

Published by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

neff = 3 ⟨ΔUΔW⟩⟨(ΔU)2⟩ = 3(∂ ln(T)
∂ ln(ρ) )sr , (2)

where ΔU and ΔW have the same meaning as in Eq. (1). This quan-
tity can also be evaluated at any state point in experiments as shown
in Ref. 19.

This work will explore the link between entropy scaling and
density scaling in the entire phase diagram of several fluids, i.e.,
both in the region of the phase diagram where isomorph theory can
explain this link and close to the gas–liquid coexistence where this
link is not clear. In order to clarify this issue, we consider three fami-
lies of “simple” systems: the Lennard-Jones monomer, the Lennard-
Jones dimer, and a range of molecular models for carbon dioxide.
First, we consider the residual entropy calculated for each system,
we calculate its density scaling exponent, and finally, we show how
residual entropy scaling and density scaling are connected.

II. METHODS
A. Thermodynamics

In order to lay out the thermodynamics, we start with the
definitions of the relevant quantities. The residual entropy sr is
defined by

sr ≡ s(T, ρ) − s(ig)(T, ρ), (3)

where s(ig) is themolar entropy of the ideal gas and s is the total molar
entropy. In practice, this difference is not evaluated directly, rather
the residual Helmholtz energy and its derivatives are used to obtain
the residual entropy sr [e.g., see Eq. (6) of Ref. 3]. Furthermore, it is
conceptually useful to consider rather than sr the non-dimensional
term s+ defined by

s+ = −sr/R, (4)

where R is the molar gas constant. Other residual properties (resid-
ual pressure pr, residual molar Helmholtz energy ar, and residual
isochoric molar heat capacity crv) are defined analogously,

pr ≡ p(T, ρ) − p(ig)(T, ρ), (5)

ar ≡ a(T, ρ) − a(ig)(T, ρ), (6)

crv ≡ cv(T, ρ) − cv(ig)(T). (7)

The quantity c(ig)v has only temperature dependence, while the other
ideal gas properties depend both on temperature and density.

The effective hardness neff is defined by22 [identical to Eq. (2)]

neff ≡ 3(∂ ln(T)
∂ ln(ρ) )sr = 3

ρ
T
(∂T
∂ρ
)
sr
. (8)

After some thermodynamic manipulations,27 the value of neff
from Eq. (8) can also be written in the equivalent formulation

neff = −3
ρ(∂s+

∂ρ
)
T

T(∂s+
∂T
)
ρ

= 3
1
ρ
(∂(pr/R)

∂T
)
ρ

crv/R . (9)

As will be shown later, the derivative (∂s+/∂ρ)T is, in general, pos-
itive and (∂s+/∂T)ρ is, in general, negative, and thus, neff should be
positive for the molecular systems studied here. Other more exotic
systems can yield negative values of neff.28

With the formalism of Lustig,29 the residual Helmholtz energy
derivatives can be obtained simultaneously in one molecular sim-
ulation run. In that framework, the density scaling exponent is
defined by

neff = −3Λ01 −Λ11

Λ20
, (10)

in which

Λij = (1/T)i(ρ)j(∂ i+j(ar/RT)
∂(1/T)i∂ρj ). (11)

In the dilute-gas limit, where two-body interactions are quanti-
fied by the second virial coefficient B2, neff is given by30

lim
ρ→0

neff = −3 T dB2

dT
+ B2

T2 d
2B2

dT2 + 2T dB2

dT

, (12)

which has recently been derived in terms of the pair potential for
an infinite number of spatial dimensions,31 where the infinite spatial
dimension limit is equivalent to the two-body limit in Eq. (12).

B. Simulation details
The Lennard-Jones monomer was simulated using the RUMD

software package.32 The potential was cut and shifted at the distance
of 2.5σ and the potential parameters of σ and ε/kB were set to unity.
The temperature was controlled with a Nosé–Hoover thermostat
using τ = 0.2 as relaxation time. The time step for the simulation was
kept constant in macroscopically reduced units dt̃ = 0.001, and the
system size was N = 1000. The values of neff were obtained from the
fluctuation formula in Eq. (2). The dependence of neff on the system
size has been studied in Appendix B of Ref. 31.

For the other fluids, molecular dynamics (MD) simulations
were performed, solving numerically Newton’s equations of motion
with a fifth-order Gear predictor–corrector scheme by using the
molecular simulation toolms2.33–36 All simulations were sampled in
the canonical ensemble with the formalism of Lustig29 to calculate
the Helmholtz energy derivatives with respect to density and inverse
temperature as well as their combinations. Velocities were isokineti-
cally rescaled to maintain the specified temperature. All CO2 models
given in Table I were simulated with ms2 as well as the Lennard-
Jones (LJ) dimer, which was set to a fixed bond length of σ. The
long-range interactions were corrected with the usual analytic mean-
field equations.33–36 Chemical potential data μi were determined
with Widom’s test particle insertion method.37 The shear viscosity
was obtained by applying the Green–Kubo formalism38,39 and the
Einstein relations36 for the LJ dimer and the selected CO2 models of
Zhang and Duan, Harris and Yung, Vrabec et al. Merker et al., and
Errington and Hellmann.

The LJ dimer was studied in the temperature range kBT/ε= 0.9–100 and density range ρσ3 = 0.000 17–0.5 with N = 1372 par-
ticles, whereas for transport properties, N = 4000 was used. For
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TABLE I. Molecular models for CO2 considered in this work.

Author Nsites Site–site Quadrupole Q × 1040 C−1 m−2
Murthy et al.47 3 LJ Point charges −12.6
Potoff and Siepmann48 3 LJ Point charges −15.1
Zhang and Duan40 3 LJ Point charges −12.8
Harris and Yung41,a 3 LJ Point charges −13.7
Möller and Fischer49 2 LJ Point quadrupole −12.2
Vrabec et al.42 2 LJ Point quadrupole −12.7
Merker et al.43 3 LJ Point quadrupole −13.6
Errington44,50 3 EXP-6 Point charges −13.5
Hellmann45 7 Empirical Point charges −14.2
aPM2, rigid.

that purpose, simulations were equilibrated by 100 Monte Carlo
(MC) cycles and 105 MD time steps. The production runs were per-
formed for a period of 4 × 106 (transport: 3–5 × 107) time steps with
Δt/(σ√m/ε) = 0.0005 (respectively, 0.001 near the vapor–liquid
equilibrium region). Intermolecular interactions were explicitly
calculated up to the cutoff radius rc = 4σ.

Each CO2 model listed in Table I was evaluated in the tempera-
ture range T = 250–10 000 K and density range ρ = 0.1–25 mol/dm3

with N = 1372 molecules and a cutoff radius of rc = 14 Å (trans-
port: N = 4000, rc = 17.5 Å). 200 MC cycles and 5 × 105 MD time
steps were used for equilibration, and the production run was
performed for a period of 4 × 106 (for transport at least 15 × 106)
time steps with Δt = 0.971 fs (for T = 250–600 K: Δt = 1.942 fs).
Besides that, some phase space regions of the Hellmann CO2
fluid had to be simulated with different settings. At T = 10 000 K
from ρ = 9–25 mol/dm3, an equilibration of 200 MC cycles and
8 × 105 MD time steps was performed followed by a production run
of 8 × 106 time steps with Δt = 0.104 fs.

The use of the formalism of Lustig29 to calculate all thermody-
namic properties from the same simulation run yields the neff values
directly from its definition in Eq. (10).46

The first four CO2 models are qualitatively similar; they con-
sist of three Lennard-Jones sites and point charges at each site.
The next three models use two or three Lennard-Jones sites, along
with a point quadrupole at the center of the molecule. The excep-
tions to this general approach are the models of Hellmann45 and
Errington.44,50 In these more advanced models, repulsion is roughly
exponential in its form, and in the case of Hellmann,45 empiri-
cal potentials have been fitted to each site–site interaction term in
order to match first principles calculations of the potential energy
surface.

The quadrupole moment of CO2 is equal to (−14.31 ± 0.74)× 10−40 C m2, according to recent measurements of Chetty and
Couling,51 which is consistent with other recent analysis.52 The
quadrupole moment of the molecular models is given in Table I.
There is no strong correlation between the quadrupole moment Q
and the representation of the data considered in this work. The
details of the evaluation of each potential are covered in the source
code of potter.53 All calculations were done in SI units to ensure
dimensional consistency.

The second virial coefficient, its temperature derivatives, and
values of neff of these models were calculated with the approach
described in Ref. 30, with the use of the open-source potter library
and multicomplex algebra to obtain B2 and its temperature deriva-
tives simultaneously. The integrator was allowed to evaluate the
integrand as many as 107 times for each temperature.

III. RESIDUAL ENTROPY
The residual entropy is the independent variable of the macro-

scopically scaled transport properties in the entropy scaling frame-
work and quantifies the loss of microstates of the system from
intermolecular interactions. Residual entropy is a property that is
not accessible experimentally, so it is not as well understood as other

FIG. 2. Values of s+ for the Lennard-Jones monomer fluid. Markers are corrected
simulation results from Ref. 55, and colored curves are from the EOS of Thol
et al.55 for isochores with more than two data points. The solid black curve is the
vapor–liquid phase boundary.
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properties, such as pressure, density, or speed of sound. A com-
prehensive study of the residual entropy obtained from empirical
thermodynamic models is called for.

For the Lennard-Jones fluid, the values of s+ can be obtained
by thermodynamic integration54 or other sampling-based meth-
ods, and the EOS of Thol et al.55 gives a faithful representation of
this quantity. Figure 2 presents the values of s+ as a function of
temperature and density for the Lennard-Jones fluid.

In this work, we compare the values of s+ obtained for the ther-
modynamic models for CO2 with each other and with the empirical
EOS of Span and Wagner.56 Figure 3 shows the residual entropy
calculated with two molecular models, those of Hellmann and
Merker et al., with the results from the Span and Wagner EOS
overlaid. This result shows that the Hellmann molecular model pro-
vides a much closer agreement with the values of s+ obtained from
the EOS of Span and Wagner than those of the molecular model
of Merker et al. For T/Tcrit ≲ 20, it is difficult to distinguish the
markers (from the molecular model of Hellmann) and the curve
(from Span and Wagner). To make the comparison more quan-
titative, Fig. 4 shows the deviations between the simulation data
and the EOS. The other molecular models generally yield similar
results to that of Merker et al., showing large deviations in residual
entropy relative to the EOS. For the Hellmann model, for temper-
atures below the limit of the EOS at 2000 K,57 the mean absolute
relative percentage error (MAPE) in s+ is 2.1%. One distinguishing
feature of the Hellmann model is its representation of the effective

FIG. 3. Results for s+ from the CO2 molecular models of Merker et al.43 and
Hellmann.45 The curve for each isochore is given by the Span and Wagner EOS.56

The vertical dashed line indicates the temperature limit of the EOS at T = 2000 K.

FIG. 4. Deviations of s+ calculated from the CO2 molecular models of Merker
et al.43 and Hellmann45 (subscript TW) from the Span and Wagner EOS56

(subscript SW).

hardness neff, as shown in Sec. V. The differences are already evi-
dent at the level of classical calculations based upon the second virial
coefficient.

For a state point either above the critical temperature or in the
gaseous phase for subcritical temperatures, scaled residual entropy at
a given state point can be obtained by an integral taken at constant
temperature,

s+ = ∫ ρ

0
(∂s+
∂ρ
)
T
dρ, (13)

where s+ in the zero density limit (that of the ideal gas) is zero.
This is the typical “thermodynamic integration” approach famil-
iar to molecular simulation practitioners, formulated in a dif-
ferent fashion. An alternative (and thermodynamically identical)
representation of Eq. (13) is

s+ = ∫ ρ

0

1
ρ2
(∂(pr/R)

∂T
)
ρ
dρ. (14)

The formulation in Eq. (14) highlights the importance of high qual-
ity densimetry data (measurements of density ρ as a function of
temperature and pressure) for the representation of residual
entropy. If the temperature and density dependence of pressure
is well captured by laboratory measurements, the derivative(∂pr/∂T)ρ will also be accurate, and the residual entropy obtained
from a highly accurate empirical model fitted to these data will also
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FIG. 5. Values of Θ2 = B2 + T(dB2/dT) from molecular models and from the
Span and Wagner56 (SW) EOS for CO2.

be accurate. In the case of CO2, we may reasonably assume that the
residual entropy obtained from the Span and Wagner EOS is prob-
ably correct within its range of validity, given the large quantity of
high quality densimetry data, and this EOS is in excellent agreement
with these data.56

At low density, s+ is governed by the leading term of the virial
expansion, as explained in Sec. S3 in the supplementary material,

lim
ρ→0

s+ = (B2 + T dB2

dT
)ρN, (15)

and hence, the behavior ofΘ2 = B2 + T(dB2/dT) can provide infor-
mation on the quality of the molecular model and that of the EOS.
Figure 5 shows the obtained values of B2 + T(dB2/dT) for each
model and the EOS. The model values were obtained classically with
potter. The quantityΘ2 must be positive for all temperatures because
the entropy must be less than that of an ideal gas at the same tem-
perature and density (see p. 447 of Ref. 58), a constraint fulfilled by
all molecular models and the EOS, but the qualitative behavior of
the EOS is incorrect (compared with the Hellmann model) above∼1000 K. The reproduction of dilute gas residual entropy values in
the low-density gas (considering values of Θ2) is thus shown to be a
sensitive test for the residual entropy.

IV. DENSITY SCALING AND ENTROPY SCALING
To begin our comparison between density scaling and entropy

scaling, we follow the approach taken in density scaling: the use
of a constant n for the entire phase diagram in the definition
of Γ. In the case of the Lennard-Jones monomer fluid, there is
a particular value of n that maximizes the correlation between(ρ∗)n/3/T∗ and s+. With this optimized value, the Spearman cor-
relation coefficient between (ρ∗)n/3/T∗ and s+ is greater than 0.999,
which represents nearly one-to-one relationship. The MD data also

FIG. 6. Values of s+ for the Lennard-Jones monomer as a function of the density
scaling variable for T∗ < 20.

consider the gaseous phase and the critical region so that most of
the phase diagram is covered. In order to assist with the visual-
ization, the value of Γ was scaled with an exponent to linearize
the relationship between Γ and s+ in Fig. 6. This figure demon-
strates that in the case of the Lennard-Jones monomer, s+ and Γ
are directly connected to each other. The particular surprise in this
figure is that the relation between Γ and s+ holds even in parts of
the phase diagram where RRos ≪ 0.9. In the dilute-gas limit, this
scaling should break down because the leading term from the virial
expansion is defined as in Eq. (15), which does not follow the same
scaling.

For the Lennard-Jones dimer, the qualitative picture is simi-
lar, as shown in Fig. 7. Again, a constant value of n was selected,
which maximized the Spearman correlation between (ρ∗s /2)n/3/T∗
and s+. The addition of the bond to form a linear molecule does not
appear to alter the core conclusion that a fixed value of n is needed
to form a one-to-one relationship between (ρ∗)n/3/T∗ and s+. For
some of the state points with RRos < 0.3, indicating a breakdown
of isomorph theory, the mapping between the variables is slightly

FIG. 7. Values of s+ for the Lennard-Jones dimer from the present simulations as
a function of the density scaling variable. Note that the density ρ∗s is the reduced
monomer number density.
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FIG. 8. Values of s+ from the Hellmann45 model for CO2 from the present simula-
tions as a function of the density scaling variable. Density ρ is in units of mol/dm3,
and temperature T is in units of K.

less strong, but aside from these deviating points, the mapping is
nearly as one-to-one as for the Lennard-Jones monomer. The values
of s+ for the dimer are approximately two times larger than those
of the monomer at the same monomer density and temperature
(microstates are removed by the fixed bond, limiting the accessible
phase space). The state point dependence is shown in Fig. S1 of the
supplementary material.

For the CO2 model of Hellmann,45 the behavior is much the
same as for the Lennard-Jones dimer. Again, n was selected to
maximize the Spearman correlation between ρn/3/T and s+ for the
points with RRos > 0.5. Figure 8 shows the same type of plot, but
with one striking difference. The relationship between s+ and Γ1/3.3
is qualitatively different; the curvature is convex in the case of
CO2 and concave in the case of the Lennard-Jones monomer and
dimer.

V. EFFECTIVE HARDNESS
The analysis above primarily focused on post hoc analysis of

simulation data in order to determine the optimal value of n for
a particular system. What if the optimal value of n is unknown? A
first glimpse of a predictive model for the optimal n comes from
a consideration of the effective hardness of interaction neff. The
quantity neff entered the vocabulary of thermodynamics with the
advent of isomorph theory. The effective hardness can be concep-
tually thought of as the effective repulsiveness of the interactions
between molecules.59

A. Lennard-Jones monomer
We first consider the density scaling exponent neff obtained

from MD simulations for the Lennard-Jones fluid. The results of
these simulations are shown in Fig. 9. The calculations extend from
the dilute gas up to extremely high temperatures and very dense
liquid states. The dilute-gas values obtained from the second virial
coefficient30 are also shown, highlighting that the values approach

FIG. 9. Values of neff and RRos for the Lennard-Jones monomer fluid. The thick
curve is the value obtained from the closed form solution for the second virial
coefficient published by Sadus,60,61 and other values were calculated from NVT
simulations performed with the RUMD software package.32

12 in the infinite temperature limit. In this high-temperature limit,
the interactions are entirely governed by the repulsive contribution
(which is proportional to r−12 for the Lennard-Jones fluid). For den-
sities and temperatures more aligned with engineering applications,
neff has both temperature and density dependence. Along the critical
isotherm, the values of neff vary from ∼16 to zero (going toward zero
at the critical point); neff is decidedly not constant for even simple
systems, such as the Lennard-Jones fluid.

The integration from Eq. (13) may equivalently be written in
terms of neff as

s+ = 1
3∫

ρ

0

(crv/R)neff
ρ

dρ. (16)

This expression provides a useful way of thinking about the rela-
tionship between residual entropy and neff. The conceptual lesson
of Eq. (16) is that if neff and crv obtained from an EOS or molecu-
lar model are both correct, the residual entropy will also be correct.
Conversely, if the values of s+ are thought to be correct and the
neff is correct, the isochoric heat capacity should also be correct.
However, experimental measurements of heat capacities for fluids
are often characterized by relatively large experimental uncertainties
and inconsistency and, in many cases, by a complete lack in the open
literature.
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At temperatures well above the critical temperature, neff
depends only relatively weakly on density,31 and the representation
of the residual entropy is therefore largely governed by the dilute-
gas neff. For instance, in Fig. 9, for T > 10Tcrit, the variation of neff
is within roughly 30% of the infinite temperature limit of 12. This is
why density scaling with a constant n works reasonably well when
studying a narrow region in the liquid region of the phase diagram,
but not otherwise. Following Eq. (16), if a model (equally an empir-
ical equation of state or molecular model) correctly predicts the
dilute-gas value for neff, the liquid phase residual entropy will be
well represented. For liquid states, most of the variation in neff for
the Lennard-Jones monomer corresponds to the region close to the
critical point.

B. Lennard-Jones dimer
The authors of Ref. 30 considered the neff in the dilute-gas

limit for rigid linear chains with Lennard-Jones sites. The values
of neff in this work were obtained by a similar method (integration
with potter over three angles and center-of-mass separation) and are
shown in Fig. 10. The fundamental difference between the Lennard-
Jones monomer and dimer is only one of magnitude; the qualitative
behavior is similar, and the vertical axis is mostly just scaled. In
the infinite-temperature limit, the value of neff also approaches
12 because at sufficiently high temperatures the dominant inter-
action is the pairwise repulsion of two sites governed by an r−12
interaction.30

C. Carbon dioxide
The molecular models used in this work for CO2 are linear and

rigid and do not allow for vibrational contributions to the energy.
The dilute-gas limit of neff can therefore be obtained, as described
above, from fourfold integration. Classical values of neff are shown

FIG. 10. Values of neff for the Lennard-Jones dimer fluid as a function of temper-
ature and monomer density ρ∗s (which is twice the reduced molecular density).
The dilute-gas limit (solid curve) was taken from Ref. 30, and the markers are the
simulation data from this work.

in Fig. 11 for the considered molecular models as a function of
temperature. The ab initio potential of Hellmann45 can yield very
accurate predictions of the dilute-gas thermophysical properties
(e.g., the second virial coefficient). As such, and especially given the
physically sound basis of this model, it is believed that the values of
neff from the Hellmann45 model in the dilute-gas limit are therefore
a suitable baseline for comparison with other models. The values of
neff calculated from the model of Hellmann are smaller than those
of the other models at all temperatures. The model of Errington
(which has a more physically sound exponential repulsion as com-
pared with the r−12 repulsion of the other models) is much closer
than the other models, which are mostly consistent, but with larger
values. The value of n for CO2 proposed in the literature for density
scaling4 is 13.5 based upon density scaling of shear viscosity data in
the liquid phase, which is near the peak value of 13.24 obtained for
neff from the Hellmann45 model.

Next, the values of neff from the molecular models are plot-
ted as a function of temperature and density in Fig. 12. Given the
qualitative similarities, only the results for theMerker et al. andHell-
mann potentials are shown here; the remainder is provided in the
supplementary material. Many qualitative features of these results
are similar to those of the Lennard-Jones fluid. At high temper-
atures (T/Tcrit ≳ 20), neff does not change much as the density is
swept through a large range, and the temperature at the maximum
of neff along an isochore does not depend strongly on the density; it
is close to the maximum obtained from the dilute-gas calculations.
The infinite temperature limit for CO2 (unphysically neglecting dis-
sociation) should be 3/2 (see the Appendix of Ref. 62), which holds
for all potentials that are finitely valued at all separations. For the
Hellmannmodel, the contributions to the potentials are divergent at
a center-of-mass separation of zero, and a small hard core is required
for each site–site interaction, which makes the infinite temperature
limit go to infinity (see, for instance, the result for the square-well
fluid in Ref. 30).

FIG. 11. Values of neff in the dilute-gas limit [from Eq. (12)] obtained by potter for
the CO2 molecular models and from the Span and Wagner56 (SW) EOS.
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FIG. 12. Results for neff for CO2 from the molecular models of Merker et al.43 and
Hellmann.45 The dashed-dotted curve for each isochore is the same quantity given
by the Span and Wagner EOS.56

VI. CONCLUSIONS
Density scaling and entropy scaling can be conceptually aligned

by considering density scaling as a mapping onto the residual
entropy. The optimal value of n to maximize the correlation between
Γ and s+ appears to be linked to themaximum of neff in the dilute-gas
limit. For the Lennard-Jones monomer fluid, the maximum is 15.06
(see Fig. 9), and the optimal scaling value is 15.9. For the Lennard-
Jones dimer fluid, the maximum value is 18.7 (see Fig. 10), and the
optimal scaling value is 17.5. For the Hellman model for CO2, the
maximum value is 13.24 and the optimal scaling value is 12.1. All
scaling values are approximately within one unit of the maximum
value of neff. This preliminary observation should be further studied
in order to understand whether this relationship should be expected
to hold in general. If so, it could offer a route to an entirely predic-
tive approach for entropy scaling that does not require an equation
of state or molecular simulation methods.

The persistent challenge of both density scaling and entropy
scaling is that a priori predictions of the functional form of the

relationship between the scaled transport properties and the inde-
pendent variable remain out of reach. In some cases (e.g., see
Ref. 9), entropy scaling yields a very simple functional form (in that
case, exponential), but an equation of state is required. The hope is
that the observations in this work about the relationship between
density scaling and entropy scaling might allow for a new empiri-
cal transport property modeling approach that is simpler to apply
with a strong theoretical basis. For instance, it was observed for
the Lennard-Jones monomer fluid, and indeed for many other flu-
ids, that there is an approximately exponential relationship between
macroscopically scaled viscosity times s+ to the power of 2/3 and the
residual entropy.9

SUPPLEMENTARY MATERIAL
The supplementary material includes additional figures of the

other CO2 models, results on change of entropy upon dimeriza-
tion, Python snippet for data processing, and critical region analysis.
The complete set of molecular simulation results for CO2 and for
the Lennard-Jones monomer and Lennard-Jones dimer models are
provided in a zip archive.
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