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Abstract Isaac Newton formulated the central difference algorithm (Eur. Phys. J. Plus (2020) 135:267) when he derived his second
law. The algorithm is under various names (”Verlet, leap-frog,..”) the most used algorithm in simulations of complex system in
Physics and Chemistry, and it is also applied in Astrophysics. His discrete dynamics has the same qualities as his exact analytic
dynamics for continuous space and time with time reversibility, symplecticity and conservation of momentum, angular momentum
and energy. Here, the algorithm is extended to include the fusion of objects at collisions. The extended algorithm is used to obtain
the self-assembly of celestial objects at the emergence of planetary systems. The emergence of twelve planetary systems is obtained.
The systems are stable over very long times, even when two “planets” collide or if a planet is engulfed by its sun.

1 Introduction

Simulations of collections of classical objects in the Universe have been performed for many decades [1–8]. The coupled second-
order differential equations have either been solved numerically by various higher-order symplectic algorithms [3,9–12] or by the
particle–particle/particle–mess (PPPM) method [13]. In the PPPM method, each mass unit, e.g., a planet is treated as moving in the
collective field of all others, and the Poisson equation for the PPPM grid is solved numerically. Later, simulations with large-scaled
computer packages [14,15] with many billions of mass units show strong evidence for dark matter in the Universe. A comprehensive
review of the simulations, the mass distribution in the Universe and the evidence for dark matter is given in [16].

The present algorithm and the simulations deviate from the previous algorithms and the PPPM model and the complex simulations
in several ways. The basic algorithm is the central difference algorithm. It appears in the literature under different names, most
known as the “Verlet-” or “leap-frog” algorithm, but it is actually first formulated by Isaac Newton in PHILOSOPHIÆ NATURALIS
PRINCIPIA MATHEMATICA in 1687 [17,18]. In celestial mechanics, it has been rediscovered as the second-order leap-frog discrete
mapping [3,9,10] and extended to higher order [11,12]. Newtons discrete expression for the relation between the positions of the
objects, their forces and the discrete time propagation is time reversible, symplectic and has the same dynamic invariances for a
conservative system as his analytic formulation [19,20]. The algorithm allows for obtaining the discrete dynamics of classical objects
without any approximations, and here his algorithm is extended to cover the fusions of objects and self-assembly at the emergence
of planetary systems.

2 The discrete algorithm for fusion of classical objects

According to Newton’s classical discrete dynamics, a new position rk(t + δt) at time t + δt of an object k with the mass mk is
determined by the force fk(t) acting on the object at the discrete position rk(t) at time t and the position rk(t − δt) at t − δt as

mk
rk(t + δt) − rk(t)

δt
= mk

rk(t) − rk(t − δt)

δt
+ δtfk(t). (1)

where the momenta pk(t + δt/2) = mk(rk(t + δt) − rk(t))/δt and pk(t − δt/2) = mk(rk(t) − rk(t − δt))/δt are constant in the
time intervals in between the discrete positions. Newton postulated Eq. (1) and obtained his second law from Eq. (1) as the limit
limδt→0 [18].

Newton is together with Leibniz the fathers of analytic mathematics and Newton’s discrete algorithm- or equivalent expressions,
is usually presented as a third-order predictor algorithm, which can be derived by a Taylor–McLaurin expansion from the objects
analytic trajectories. Brok Taylor (1685-1731) lived at the same time as Newton (1643-1727), and Newton had full knowledge of
Taylor expansions, but Newton never presented his expression for his second law, even in his later two editions of Principia,
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as the first and leading term in an analytic expansion. And with good reason because, unlike algorithms obtained by higher-order
expansions, his discrete algorithm has all the qualities of the analytic analog.

Isaac Newton obtained his second law as the limit expression limδt→0 of the central difference in momentum for a planet at a
discrete change δt in time. But he noticed in Principia at the derivation of the law that the areas of three triangles in his geometrical
construction of the discrete trajectory of a planet are equal, an irrelevant observation for the derivation, but he did not mention the
consequence of the equal areas. It is Kepler’s second law, and the young Newton must immediately, when he postulated the law
have realized, that his discrete relation Eq. (1) at least explains Kepler’s second law. But he did not mention it at the derivation of
the second law, even much later when he wrote Principia, nor in his second- or third editions of Principia [17]. The fulfillment
of Kepler’s second law is a consequence of the conserved angular momentum in his discrete dynamics [22]. An explanation for that
Newton on the one hand noticed the equality of the areas of the triangles, and on the other hand did not noticed that this explains
Kepler’s second law could be, that he believed that the exact classical dynamics first is achieved in the analytic limit with continuous
time and space. But this is in fact not the case, his discrete dynamics has the same invariances as his analytic dynamics. Due to the
time symmetry, it is time reversible and the algorithm is also symplectic [3,9,10,23]. The conservation of momentum and angular
momentum is ensured by Newton’s second and third law, because the sum of the forces between the objects in a conservative system
is zero. The algorithm conserves also the energy, but it is, however, not obvious because of the asynchronous appearance of positions
and momenta, and thereby the asynchronous determination of the potential- and the kinetic energy. But one can prove that the discrete
algorithm conserves the energy [20] and also show that there (most likely) exists a ”shadow Hamiltonian” nearby the Hamiltonian for
the analytic dynamics and where the discrete positions are located on the shadow Hamiltonian’s analytic trajectories [19,21,22]. So
the discrete dynamics has a constant energy given by the energy of the shadow Hamiltonian. Newton’s discrete algorithm has been
rediscovered several times, most known by L. Verlet [24], and it appears with a variety of names: Verlet-, Leap-frog,...[22]. Almost
all molecular dynamics (MD) simulations of complex physical and chemical systems and many celestial mechanics simulations are
performed with Newton’s discrete algorithm.
It is convenient to reformulate Newton’s algorithm as the “Leap frog” algorithm

vk(t + δt/2) = vk(t − δt/2) + δt/mkfk(t), (2)

with the velocities v(t + δt/2) and v(t − δt/2) and the positions

rk(t + δt) = rk(t) + δtvk(t + δt/2), (3)

so the new positions at t +δt are obtained in two steps, first by calculating the new (mean) velocities vk(t +δt/2) in the time interval
[t, t + δt] from the old velocities vk(t − δt/2) in the previous time interval and the forces fk(rk(t)) at the positions rk(t), and then
the new positions rk(t + δt) are obtained from the velocities vk(t + δt/2) .

Newton’s discrete algorithm is here used as a starting point for a formulation of a discrete algorithm for the irreversible fusion
of spherical symmetrical objects by classical dynamics with inelastic collisions. The derivation of the algorithm is governed by a
desire to preserve as much as possible of the invariances of Newton’s dynamics.

2.1 An algorithm for coalescence of classical objects and formation of planetary systems

The classical discrete dynamics between N spherically symmetrical objects with masses mN = m1,m2, ..,mN and positions
rN (t) = r1, r2, .., rN is obtained by Eq. (2) and Eq.(3) with extensions.

According to Newton’s shell theorem [25], the force, Fi , on a spherically symmetrical object i with mass mi is a sum over the
forces, f(ri j ), caused by the other spherically symmetrical objects j with mass m j , and it is solely given by their center of mass
distance ri j to i

Fi (ri j ) = �N
j �=i f(ri j ) = −Gmim j

r2
i j

r̂i j . (4)

Let all the spherically symmetrical objects have the same (reduced) number density ρ = (π/6)−1 by which the diameter σi of
the spherical object i is

σi = m1/3
i (5)

and the collision diameter

σi j = σi + σ j

2
. (6)

If the distance ri j (t) at time t between two objects is less than σi j the two objects merge to one spherical symmetrical object with
mass

mα = mi + m j , (7)
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and diameter
σα = (mα)1/3, (8)

and with the new object α at the position

rα = mi

mα

ri + m j

mα

r j , (9)

at the center of mass of the two objects before the fusion. (The object α at the center of mass of the two merged objects i and j
might occasionally be near another object k by which more objects merge, but after the same laws.)

Let the center of mass of the system of the N objects be at the origin, i.e.,

�kmkrk(t) = 0. (10)

The momenta of the objects in the discrete dynamics just before the fusion are pN (t − δt/2) and the total momentum of the
system is conserved at the fusion if

vα(t − δt/2) = mi

mα

vi (t − δt/2) + m j

mα

v j (t − δt/2), (11)

which determines the velocity vα(t − δt/2) of the merged object.
The invariances in the classical Newtonian dynamics are for a conservative system with Newton’s third law, i.e., with

fkl(t) = −flk(t) (12)

for the forces between two objects k and l, and with no external forces. An object k’s forces with i and j before the fusion are fik(t)
and f jk(t), and these forces must be replaced by calculating the force fαk(rαk(t)). The total force after the fusion is zero due to
Newtons third law for a conservative system with the forces fαk = −fkα between pairs of objects, and the total momentum

�kpk(tn + δt/2) = �kpk(tn − δt/2) + δt�kfk(tn)

= �kpk(tn − δt/2), (13)

and the position of the center of mass are conserved for the discrete dynamics with fusion.
The determination of the position, rα(t) and the velocity, vα(t − δt/2), of the new object from the requirement of conserved

center of mass and conserved momentum determines the discrete dynamics of the N − 1 objects.
The angular momentum is affected by the fusion. The angular momentum of the system of spherically symmetrical objects consist

of two terms
L(t) = LG(t) + LI (t) (14)

where LG(t) is the angular momentum of the objects due to the dynamics obtained from the gravitational forces between their
center of masses, and LI (t) is the angular momentum due to the spin of the objects. Without fusion LG(t) is conserved for Newtons
discrete dynamics [22]. LI (t) is, however, also conserved according to the shell theorem [25] , where Newton proves that no net
gravitational force is exerted by a shell on any object inside, regardless of the object’s location within the uniform shell, by which
the spin of the object is not affected by any force and is therefore constant. But at a fusion LG changes by

δLG(t) = rα(t) × mαvα(t − δt/2) − ri (t) × mivi (t − δt/2) − r j (t) × m jv j (t − δt/2). (15)

and LI changes by

δLI (t) = (ri (t) − rα(t)) × mivi (t − δt/2) + (r j (t) − rα(t)) × m jv j (t − δt/2)

= ri (t) × mivi (t − δt/2) + r j (t) × m jv j (t − δt/2) − rα(t) × mαvα(t − δt/2)

= −δLG(t). (16)

So without fusion the angular momenta LI (t) and LG(t) with Newton’s discrete dynamics are conserved separately, and at a
fusion the total angular momentum is still conserved but with an exchange of angular momentum with δLI (t) = −δLG(t).

The exact classical discrete dynamics with fusion of colliding objects can be used to explore the self-assembly at the emergence
of planetary systems and to investigate the stability and chaotic behavior of solar systems [26].

3 Simulation of formation of planetary systems

The algorithm Eqs.(2), (3) and IIA is used to simulate the emergence of planetary systems. The setup of the actual MD systems and
the general conditions for MD for gravitational systems is given in the Appendix. Our planetary system is presumably created from
flattened, rotationally supported disc structures of cosmic dust grains, and the composition of the building blocks–planetesimals—
is grossly different from that of the sun [27]. Here, the results for twelve MD simulations of the emergence of planetary systems
are presented. The planetary systems are obtained from different diluted “gas” states of N = 1000 objects with equal masses and
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Fig. 1 The number N (t) of objects (sun, planets and free objects) as a function of time t with fusion for one (No. 1) of the twelve systems. This system
contained 852 objects at t = 250. The positions of the N=852 objects are shown in Fig. 2 (red dots) together with the start positions with N = 1000 (small
blue dots). At t = 4.5 × 106 the planetary system contained one Sun and 165 planets and free objects, and the system aged with only one fusion for the
succeeding �t = 5.5 × 106 time. The planet orbits at t = 4.5 × 106 for four inner planets are shown in Fig. 3
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Fig. 2 The positions of the N objects at the start of fusion with small blue dots, and with red dots at t = 250 where the fusion accelerated (Fig. 1) and
ended with one sun, 23 planets and 142 free objects
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Fig. 3 The sun (red, enlarged) with four planets close to the sun. The orbits are obtained at t = 4.50 × 106 after creation of the solar system. Light blue:
Orbit time Torbit = 630, eccentricity ε = 0.941; green: Torbit = 1308, ε = 0.867; blue Torbit = 1740, ε = 0.377; magenta Torbit = 1529, ε = 0.815. The
light blue planet has circulated ≈ seven thousand times around the sun

at different low temperatures (mean velocity of the objects), and the systems can be considered as embryos of planetary systems by
self-assembly of simple small grains.

The creation of a system with one heavy central object and with some of the other objects in orbits around the central “sun”
is established within a relative short period of time as illustrated in Fig. 1. The start configurations are diluted spherical (gas)
distributions of objects (see Appendix). The objects are accelerated toward the center of mass by the gravitational forces, and the
fusion of objects results in a creation of a system with one heavy object (the sun) and with other of the objects in elliptical orbits
around the sun. The solar systems are created rather quickly. The system No. 1 (Figs. 1, 2, 3, 4, 5 and Table 1) is established already
after a fusion time t ≈ 1000 (see Fig. 1, for MD details and unit of time see Appendix) with 386 objects consisting of one sun with
the mass msun = 557 and many planets and free objects. Nine of the planets have a mass m = 3, but most of the other planets and
free objects (338) are not fused with others and have a mass m = 1. The solar system is in a rather stable state but ages slowly
(Fig. 1). First after t = 4.5 × 106 are all twelve planetary system stable and with very rare mergers (Table I). The four planets in
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Fig. 4 Mean log−distances (log < ri,sun(t) >) to the sun of the objects i as a function of their relative (log) mean velocities log(< vi,sun(t)) >) for
planetary system No. 1. The means are for a time interval �t ∈ [4.0 × 106, 4.5 × 106]. The locations of the four inner planets in Fig. 3 are marked with their
color from Fig. 3. The planets (colored spheres) are located on the lower branch of the distribution and the upper branch shows (black spheres) the mean
locations of the free objects. The “Kuiper belt” with there objects (grey spheres) is estimated to be for mean locations ≈< ri,sun(t) >∈ [30000, 200000].
Orbits of planets in the Kuiper belt are shown in the next Fig.

Fig. 5 Two planets in the “Kuiper
belt.” The planet shown with
green changed its course, but
remained in the Kuiper belt,
whereas the planet shown with
blue escaped the planetary system
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planetary system No. 1 closest to the sun are shown in Fig. 4. The angular momentum, LG , of the planetary system is constant if
there is no fusion, but also the angular momenta of the individual planets are also almost constant. The four planets shown in Fig. 4
have almost constant angular momenta with closed elliptical orbits.

The solar system shown in Figs. 1, 2, 3, 4 is system No. 1 (see Table 1). It consists of many planets including very tiny bounded
planets in a “Kuiper belt” and with orbits which have an orbit time of more than torbit = 1 × 105. The existence of such Kuiper belt
makes it difficult to determine precisely how many planets a planetary system consists of since the planets change their orbits over
time. The distribution of planets and free objects is determined from the distances and velocities relative to the sun. A planet will
have a relative short mean distance to the sun, averaged over a long time interval, whereas a free object has a long mean distance
and a constant velocity. Figure 4 shows the relative mean distances of the objects to the sun as a function of their relative mean
velocities, where the means are obtained for �t ∈ [4.0 × 106, 4.5 × 106]. The distribution has two branches, a lover branch for the
planets and an upper branch for the free objects.

The Kuiper belt is located in between the two branches in Fig. 4. The objects in this zone are almost free from the gravitational
attractions of the sun and the other planets, and sometimes an object in this zone escapes from the planetary system. Figure 5
shows two planets in the Kuiper belt, where one (green) remained in the planetary system, whereas one (blue) escaped. The planet
with green remained in the planetary system and with elliptical-like orbits. The planet with green was in an elliptical orbit with an
eccentricity

ε = rmax − rmin

rmax + rmin
= 156090 − 115

156090 + 115
= 0.9985, (17)

and with the longest distance rmax = 156090 at aphelion and the shortest distance at perihelion rmin = 115. The orbit time is
5.06 × 105. After passing the aphelion at ri,sun=156090, the planet ended in a new elliptical orbit closer to the sun with a new
aphelion distance ri,sun=38635. The other object shown with blue in Fig. 5 excaped the planetary system.

Our Solar system has a Kuiper belt located ≈ 30–100 AU (astronomical unit = mean distance between the Earth and the Sun).
This distance is translated to the present solar systems by setting 1 AU=500, i.e., ≈ equal to the mean distance of one of the inner
planets in Fig. 4 (light blue). The lower border of the present Kuiper belt should be ≈ 30 × 500 = 15000 with this unit and the
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Table 1 Collected data for the planetary systems

No. Inner Planets ”Kuiper planets Free objects mSun < rcl > Temp.

1 21 2 142 830 484 4.24

2 25 10 317 628 119 8.88

3 24 10 229 720 150 11.60

4 13 5 224 739 455 12.53

5 23 7 253 700 191 10.76

6 8 3 116 865 131 5.00

7 7 0 147 839 262 19.08

8 13 4 182 765 452 3.45

9 15 6 159 779 402 4.62

10 12 2 141 826 44 3.95

11 8 2 107 862 43 4.76

12 6 2 90 897 145 4.65

Fig. 6 The eccentricity of the
planets in the twelve planetary
systems as a function of their
mean distances from their suns
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upper border should be ≈ 50000. The planet orbit shown with green in Fig. 5 has a maximum distance 156090. The present Kuiper
belt in planetary system No. 1 is estimated to be in the interval | r(t) − rsun(t) |∈ [30000, 200000].

The data for the twelve simulations of planets systems are collected in Table I. The data are obtained in the time interval
t ∈ [4.0 × 106, 4.50 × 106] after the start of the fusions. The mean distances < rcl > are the mean distance to the sun for the planet
in a system closest to the sun. The temperatures, T , of the objects are obtained from the mean kinetic energy < EKin > /N = 3/2T ,
and the different start distributions and kinetic energies of the objects result in temperatures which varies with a factor of ≈ 4. There
is, however, no clear connection between the number of planets and the mean kinetic energies of the planetary systems.

The eccentricities and mean positions of planets in the twelve systems are shown in Fig. 6. The distributions show that the inner
planets in general have an eccentricity significant below ε = 1, which is the limit of stability for an elliptical orbit, whereas the
planets close to the border of the Kuiper belt (≈ 30000) all have eccentricities only little less than the limit of stability.

4 Conclusion

Newton solved in Principia as the first, Kepler’s equation and determined the analytic expression for the orbit of a planet -or a
comet, but the analytic dynamics of a solar system with many planets can only be obtained numerically, traditionally by the use
of higher order symplectic algorithms. But the discrete dynamics with Newtons central difference algorithm is also time reversible
and symplectic and has the same invariances as his analytic classical dynamics. Here, his discrete algorithm is extended to handle
fusion of objects at a collision and to create small planetary systems.

The formation of a planetary system depends on the distribution and the kinetic energies of the collection of objects that start
to fuse together. Our planetary system is presumably created from flattened, rotationally supported disc structures of cosmic dust
grains, and the composition of the building blocks—planetesimals —is grossly different from that of the sun [27]. Here, twelve
planetary systems are created by fusions of a small number N = 1000 objects (planetesimals) with equal masses and from a spherical
starting distribution of the merging objects, in order to test the algorithm and to obtain an “embryo” of a planetary system. The time
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evolutions in the systems reveal that the objects spontaneously form “mini” planetary systems with a heavy “sun” and with many
of the planetesimals in orbits around the sun. The planetary systems have some qualities which agree with our own Solar system,
with stable elliptical orbits and with many bounded objects at great distances from the sun in a “Kuiper belt.” But the planetary
systems deviate from the Solar system by, that the orbits are not in a common Ecliptic plane due to the spherically distributed starting
positions of the merging objects. Furthermore, there is no planetary systems with moons. These deviations can, however, very well
be a consequence of the small size of the systems with only N = 1000 spherically distributed objects at the start of the fusion, and
to the monodispersity of the systems with equal masses of the objects at the start. The small systems was selected in order to be
able to follow the created solar systems over very long times without any approximations in order to test the exact algorithm and
the aging and stability of the planetary systems.

The planetary systems are established over a short period of time with fusions. The systems are stable and age slowly by that a
planet occasionally collided with another planet or with the sun and merge. Some of the planets were also accelerated out of the
planetary system (Fig. 5). The planetary systems show chaotic sensitivity, and the actual numbers of inner planets and their positions
and eccentricities depend on the forces from all the other objects in the system, including the free objects far from the sun. Almost
all of the twelve planetary systems contain many planets in Kuiper belts far from the suns.

The extension of Newton’s discrete dynamics with the algorithm for fusion of colliding objects is the simplest possible. The
fusion of two spherical symmetrical objects to one uniform and spherical symmetrical object is far from what actually happens when
two macroscopic celestial bodies merge [28]. But, although it is straight forward to extend the algorithm to a more complex fusion
at the collision, it has not be the goal with the present investigation. The algorithm is suitable for analysis of the self-assembly of
planetesimals and, due to the exact dynamics, the algorithm can be useful at investigations of the impact of the chaotic behavior on
the stability of planetary systems.

Acknowledgements This work was supported by the VILLUM Foundation Matter project, grant No. 16515.

Data Availability Statement Data will be available on request.

5 Appendix: Molecular dynamics simulation of planetary systems

The simulations of the creation of planetary systems were performed for different numbers N = 100, 1000 and 10000 of objects and
for different start configurations of the objects. The spherically symmetrical objects are identical and interact with the gravitational
force Eq. (4). All units (mass, time, length, energy/force) are given in units given by G,mi and σi , and the present simulations are
started with N = 1000 objects with equal masses mi = 1 and diameter σi = 1. In order to simulate the orbit of a planet near the
sun, it is necessary to choose a small time increment δt = 0.0025 [22]. The MD simulations are with double-precision variables, the
center of mass and the momentum and orbits of planets are conserved after more than 109 time steps with a small time increment
δt = 0.0025.

The phase space diagram for the gravitational system [29] differs from a traditional phase space diagram. A collection of objects
will, without fusion collapse at low temperature (velocities of the objects) and relative high concentration in the collection [30], but
at high temperatures and low concentrations the collection of objects expands continuously in the space. The collapsed spherical
symmetrical objects will, without fusion perform a crystal. It is as mentioned not possible to obtain a traditional phase diagram for
a classical system with gravitational forces because the energy per object

u/kT = 2πρ

∫ ∞

0
u(r)g(r)r2dr

≈ −2πρGm1m2

∫ ∞
r12dr12 (18)

(and free energy) diverges for an uniform distribution. The objects crystallize at low temperatures if the objects perform elastic
collisions without fusion. In contrast to this behavior, the collections of free objects at low temperatures and concentrations and with
fusion merge into solar systems with planets in regular orbits. The algorithm with fusions is used obtain planetary systems.

Here, we shall describe twelve simulations of the emergence of planetary systems for N = 1000 and for diluted gas configurations
of the objects at the start, which are spherically (blue dots in Fig. 3). The twelve systems are generated for different start configurations
and kinetic energies. The momenta and angular momenta LG(0) at the start t = 0 are adjusted to zero.

Depending on the start configurations of positions and kinetic energy, the systems either collapse at low kinetic energy and high
gas density into one heavy object (black hole), or expand in the open space for high kinetic energy and low density. But in between
these ranges of velocities and concentrations some objects merge with creation of one heavy object (the sun), with planets and with
unbounded objects. (A free object is characterized by the fact that it, with a constant direction with respect to the sun and with a
positive energy E = EKin + EPot, increases its distance to the sun.)

The twelve systems are started at different mean “temperatures” T in the interval T ∈ [0.1, 0.5]. The fusions started shortly after
(Fig. 2) with an increase in the mean velocities. The total momenta and the center of masses and angular momenta L are conserved,
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but the angular momenta LG are not conserved at the fusions, but varied within the range LG ≈ [-10, -10]. The random round-off
errors in the double precision arithmetic have no effect on the orbits of the planets. The simulations were performed by consecutive
simulations with 2 × 108 time steps. At the start of a simulation, the center of mass and momentum components were adjusted to
zero, and by the end of a simulation the round-off errors had changed the center of mass components from ≈ 10−18 to ≈ 10−16. The
components of the momentum were changed with the same factor. These tiny adjustments have, however, no effect on the stability,
nor on the orbits of the planetary systems.

Without any approximations, the dynamics of a planetary systems is time demanding because one needs a rather small time
increment δt to obtain the orbit of a planet at Perihelion accurately, and the stability of the planetary system is given by its long-time
behavior, which together implies that it is necessary to performs billions of time steps in order to obtain the long-time behavior of
a planetary system. The present calculations are for n = 1.8 × 109 time steps (t = 4.5 × 106). Another complication is that the
computational time without some approximations varies with the number N of objects as ∝ N 2. It is, however, straight forward to
implement different kind of time consuming approximations used in MD [13,31] whereby the computational time varies proportional
to ≈ N .
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