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Effectively one-dimensional phase diagram of CuZr liquids and glasses
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This paper presents computer simulations of CuxZr100−x (x = 36, 50, 64) in the liquid and glass phases. The
simulations are based on the effective-medium theory potentials. We find good invariance of both structure
and dynamics in reduced units along the isomorphs of the systems. The state points studied involve a density
variation of almost a factor of 2 and temperatures going from 1500 K to above 4000 K for the liquids and
from 500 K to above 1500 K for the glasses. For comparison, results are presented also for similar temperature
variations along isochores, showing little invariance. In general for a binary system the phase diagram has three
axes: composition, temperature, and pressure (or density). When isomorphs are present, there are effectively
only two axes, and for a fixed composition there is just one. We conclude that the liquid and glass parts
of the thermodynamic phase diagram of this metallic glass former at a fixed composition are effectively
one-dimensional in the sense that many physical properties are invariant along the same curves, implying that in
order to investigate the phase diagram, it is only necessary to go across these curves.
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I. INTRODUCTION

Metallic systems constitute a very important category of
glass formers due to their potential applications, as well as
their suitability as model systems for studies of the glass
transition in computer simulations [1–5]. A well-studied ex-
ample is the CuZr system, which at certain compositions is
a good glass former despite consisting of just two elements
[3,6]. This paper presents numerical evidence that both above
and below the glass transition, CuZr systems are simpler than
has hitherto been recognized. Specifically, for three different
compositions of the CuZr system we show that curves exist
in the thermodynamic phase diagram along which the atomic
structure and dynamics are invariant to a good approximation.
The implication is that the two-dimensional thermodynamic
phase diagram is effectively one-dimensional in regard to
many material properties.

The background of the investigation is the following. In
liquid-state theory, a simple liquid is traditionally defined as
a single-component system of particles described by classical
Newtonian mechanics and interacting by pair-potential forces
[7–12]. It has been known for more than half a century that the
hard-sphere (HS) model reproduces well the physics of many
simple liquids, both in regard to the radial distribution func-
tion (RDF) and to dynamic properties such as the viscosity or
the diffusion coefficient [12–18]. The traditional explanation
of the success of the HS model is the “van der Waals picture,”
according to which the repulsive forces dominate the physics
of simple liquids [12,15–17,19].

The HS model is a caricature simple liquid with pair
forces that are zero except right at the particle collisions.
In the HS model, temperature plays only the trivial role of
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determining particle velocities and thus the timescale; temper-
ature is entirely unrelated to the geometry of relative particle
positions. This implies that the thermodynamic phase diagram
of the HS system is effectively one-dimensional with density
being the only nontrivial variable: the dynamics of two differ-
ent HS systems with the same packing fraction but different
temperatures are identical, except for a trivial uniform scaling
of the space and time coordinates. As a consequence, scaled
RDFs are identical, scaled mean-square displacements are
identical, viscosities are trivially related, etc.

The mapping of a simple liquid to a HS system presents
the issue of identifying the effective HS packing fraction
at a given thermodynamic state point of the liquid. Many
suggestions have been made for how to calculate the rele-
vant hard-sphere radius, yet no consensus has been arrived
at [20–28]. Already in 1977, Rosenfeld suggested a power-
ful thermodynamics-based alternative by basically reasoning
as follows [29]: Since the HS packing fraction determines
the configurational part of the entropy, this quantity provides
the required mapping between a simple liquid and its cor-
responding HS system. Defining the excess entropy Sex as
the system’s entropy minus that of an ideal gas at the same
density and temperature [12,29], Sex quantifies the config-
urational entropy (note that Sex < 0 because any system is
less disordered than an ideal gas). Rosenfeld’s suggestion
implies invariance of the physics along the curves of con-
stant excess entropy in the phase diagram. He validated this
using that time’s fairly primitive computer simulations of the
Lennard-Jones system and a few other simple liquids [29].
Rosenfeld’s insight is now referred to as “excess-entropy
scaling,” a property that has received increasing attention
since the turn of the century because it has been found
to apply also for many nonsimple systems like liquid mix-
tures, molecular liquids, confined liquids, crystalline solids,
etc. [30].

2469-9950/2021/103(13)/134204(13) 134204-1 ©2021 American Physical Society

https://orcid.org/0000-0002-3782-4914
https://orcid.org/0000-0002-2519-2403
https://orcid.org/0000-0002-0770-5690
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.134204&domain=pdf&date_stamp=2021-04-13
https://doi.org/10.1103/PhysRevB.103.134204


FRIEDEHEIM, BAILEY, AND DYRE PHYSICAL REVIEW B 103, 134204 (2021)

0.06 0.08 0.10.1

Density [Å-3]

50
0

10
00

20
00

40
00

T
em

pe
ra

tu
re

 [
K

]

Cu36 Zr64

Cu50 Zr50

Cu64 Zr36

Liquid(a)

0.06 0.08 0.10.1

Density [Å-3]

50
0

10
00

20
00

40
00

T
em

pe
ra

tu
re

 [
K

]

Cu36 Zr64

Cu50 Zr50

Cu64 Zr36

Glass(b)

FIG. 1. Logarithmic density-temperature phase diagrams show-
ing all state points simulated along isochores (vertical lines) and
isomorphs (lines at an angle). The colors reflect the three different
compositions studied. (a) gives liquid state points and (b) gives
glass state points. Each isomorph is generated by means of the
direct-isomorph-check method (see the text), proceeding in steps
of 5% density changes starting from “reference” state points at a
temperature of 1500 K for the liquids and 500 K for the glasses
(solid symbols). The reference state point densities were selected
to have approximately the same pressure (∼ 17 GPa), while the
lowest-density state points have approximately zero pressure (com-
pare Tables II and III). The isochores studied for comparison to the
isomorphs are the vertical lines through each reference state point.

In the last 20 years, glass science has progressed signif-
icantly by the introduction of density scaling, also called
thermodynamic scaling. This is the discovery that in the
search for a simple mathematical description, the relevant
thermodynamic variables are not temperature and pressure,
but temperature T and the particle number density ρ [31–36].
When density scaling is applied to experimental data, if γ

is the so-called density-scaling exponent, plotting data for
the dynamics as a function of ργ /T results in a collapse
[32,33,35,36]. This means that the dynamics depends on the
two variables of the thermodynamic phase diagram only via
the single number ργ /T . It should be emphasized that density
scaling is not universally applicable; for instance, it works
better for van der Waals liquids and metals than for hydrogen-
bonded liquids [33,36,37]. An important extension of density
scaling was the discovery of isochronal superposition, ac-
cording to which not only is the average relaxation time
invariant along the curves of constant ργ /T , but so are the
frequency-dependent response functions [38–40]. This sug-
gests that the way atoms or molecules move about each other
is identical at state points with the same value of ργ /T . One
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FIG. 2. Virial potential-energy correlation coefficient R [Eq. (5)]
and density-scaling exponent γ [Eq. (6)], plotted along the iso-
morphs as a function of the density relative to that of the reference
state point (which has temperature 1500 K for the liquids and 500 K
for the glasses). (a) is the liquid and (b) is the glass. We see similar
pictures in the two cases, with γ decreasing significantly as density
is increased, indicating an effective softening of the interactions. The
virial potential-energy correlations are generally strong, with a max-
imum at densities close to the reference state point densities denoted
by ρ0. The dashed lines mark R = 0.9, which is traditionally used
for delimiting state points for which isomorph theory predictions are
expected to apply [42,59].

may think of this as a “same-movie” property: Filming the
atoms/molecules at two such state points results in the same
movie except for a uniform scaling of all particle positions
and of the time.

The above-mentioned findings can all be derived from the
hidden-scale-invariance property stating that the ordering of
a system’s configurations R ≡ (r1, . . . , rN ) (in which N is
the number of particles and ri is the position of particle i)
according to their potential energy U (R) at one density is
maintained if the configurations are scaled uniformly to a
different density [41]. The formal mathematical definition of
hidden scale invariance is the following logical implication:

U (Ra ) < U (Rb) ⇒ U (λRa ) < U (λRb). (1)

Equation (1) implies that structure and dynamics, when given
in proper reduced units, are invariant along the curves of
constant excess entropy, the system’s so-called isomorphs
[30,41,42]. This result is rigorous if Eq. (1) applies without
exception, but that is never the case for realistic models.
However, isomorph invariance is still a good approximation
if Eq. (1) applies for most of the physically important con-
figurations and for scaling parameters λ relatively close to
unity. This is believed to be the case for many metals and van
der Waals bonded systems, whereas systems with strong di-
rectional bonds like hydrogen-bonded and covalently bonded
systems are not expected to obey isomorph theory predictions
[43]. For metals the existence of isomorphs has been validated
in a few cases [44,45].

TABLE I. EMT parameters for Cu and Zr in CuZr mixtures [57].

Element s0 (Å) E0 (eV) λ (Å−1) κ (Å−1) V0 (eV) n0 (Å−3) n2 (Å−1)

Cu 1.41 −3.51 3.693 4.943 1.993 0.0637 3.039
Zr 1.78 −6.30 2.247 3.911 2.32 0.031 2.282
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TABLE II. Temperature, density, and pressure of liquid isomorph state points. The bold row represents the reference state point for the
isomorph of each composition.

Cu36Zr64 Cu50Zr50 Cu64Zr36

T (K) ρ (Å−3) p (GPa) T (K) ρ (Å−3) P (GPa) T (K) ρ (Å−3) P (GPa)

875 0.0508 1.7 870 0.0556 0.8 950 0.0620 1.5
1219 0.0551 9.6 1217 0.0602 9.0 1215 0.0659 8.4
1500 0.0585 17.2 1500 0.0640 17.2 1500 0.0700 17.1
1745 0.0614 24.6 1747 0.0672 25.2 1749 0.0735 25.6
1999 0.0645 33.2 2005 0.0706 34.5 2009 0.0772 35.7
2266 0.0677 43.2 2274 0.0741 45.4 2283 0.0810 47.6
2540 0.0711 54.8 2555 0.0778 58.0 2568 0.0851 61.3
2828 0.0747 68.0 2850 0.0817 72.5 2867 0.0893 77.3
3122 0.0784 83.0 3151 0.0858 89.2 3177 0.0938 95.6
3428 0.0823 100.1 3464 0.0901 108.1 3499 0.0985 116.6
3746 0.0864 119.5 3795 0.0946 129.7 3834 0.1034 140.7
4070 0.0908 141.3 4128 0.0993 154.2 4179 0.1086 168.0
4404 0.0953 165.8 4473 0.1042 181.8 4533 0.1140 199.0

In isomorph theory the density-scaling exponent γ is gen-
erally state point dependent. This was recently confirmed in
high-pressure experimental data [46–48]. Systems with hid-
den scale invariance are referred to as R-simple in order to
indicate the simplification of the physics that follows from
this symmetry; most, but not all, pair-potential systems are
R-simple, and several molecular systems are also R-simple,
necessitating a specific name for this class of systems.

The purpose of the present paper is to check for isomorphs
in a typical metallic glass former. For this we have chosen
to study three different CuZr mixtures. As a representative
of the Cu-rich alloys that have been most commonly studied
in experiments [4–6], we have chosen the 64:36 composition.
Supplementing this, we also simulated the 50:50 and the 36:64
compositions. The findings of all three systems are similar.
The systems have been computer simulated in both the liquid
and glass phases, using the effective-medium theory (EMT)
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FIG. 3. The density-scaling exponent γ for all state points stud-
ied. (a) and (b) show data for γ as a function of the density for the
liquid and glass state points, respectively, and (c) and (d) similarly
show γ as a function of the pressure.

interaction potentials [49–51]. We find good isomorph invari-
ance of structure and dynamics involving density changes up
to a factor of 2. This implies a significant simplification in
the description of the physics of this metallic glass former
since the thermodynamic phase diagram of CuZr is effectively
one-dimensional.

II. THE EFFECTIVE-MEDIUM THEORY POTENTIAL

The EMT potentials [49–51] is one of several similar
potentials aimed at describing metals with an accuracy com-
parable to that of a full density functional theory (DFT)
treatment, but at a much lower computational cost. A widely
used class of potentials in this group of mean-field potentials
is the embedded atom method (EAM) [52,53]. EMT and
EAM both write the total energy E as a pair-potential term
plus a function of the local electron density at each particle.
The EMT realizes this in a semiempirical way, whereas the
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FIG. 4. Example of a direct isomorph check, here with state point
1 being the reference state point of the 64:36 mixture (T = 1500 K)
and state point 2 having a 5% higher density. At state point 1, a
series of thermal-equilibrium configurations R are sampled. Each
of these is scaled uniformly by the factor (ρ2/ρ1)−1/3 = 0.9839,
resulting in a 5% higher density. Plotting the potential energies of
scaled versus unscaled configurations, the slope of the best-fit line
is T2/T1 [compare Eq. (10)]; this determines the temperature T2 that
makes the state point (ρ2, T2) isomorphic to (ρ1, T1).
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TABLE III. Temperature, density, and pressure of glass isomorph state points. The bold row represents the reference state point for the
isomorph of each composition. The starting point for the glass isomorph has the same density as that of the liquid isomorph but the temperature
500 K.

Cu36Zr64 Cu50Zr50 Cu64Zr36

T (K) ρ (Å−3) p (GPa) T (K) ρ (Å−3) P (GPa) T (K) ρ (Å−3) P (GPa)

339 0.0529 0.4 398 0.0602 3.1 400 0.0659 1.7
432 0.0562 6.2 466 0.0627 7.7 467 0.0686 6.6
500 0.0585 11.0 500 0.0640 10.3 500 0.0700 9.5
587 0.0614 17.6 575 0.0672 17.3 578 0.0735 17.1
683 0.0645 25.5 672 0.0706 25.9 667 0.0772 26.1
781 0.0677 34.6 773 0.0741 35.8 758 0.0810 36.8
880 0.0711 45.2 877 0.0778 47.5 858 0.0851 49.4
980 0.0747 57.6 989 0.0817 60.7 968 0.0893 64.1
1088 0.0784 71.5 1103 0.0858 76.4 1083 0.0938 81.0
1200 0.0823 87.6 1218 0.0901 94.1 1203 0.0985 100.6
1304 0.0864 105.9 1340 0.0946 114.3 1325 0.1034 123.4
1442 0.0908 126.5 1440 0.0993 137.7 1453 0.1086 149.1
1558 0.0953 149.7 1575 0.1042 163.5 1596 0.1140 178.7

parameters of the EAM are determined by fitting to experi-
mental properties of the bulk solid. For more on the relation
between the EAM and EMT potentials, the reader is referred
to Refs. [49,50], while Ref. [51] gives a detailed derivation of
the EMT potential and its parameters. A great advantage of
the EMT is that the mathematical expression for the energy is
relatively simple. This made it straightforward to implement
EMT in our graphics processing unit (GPU) code RUMD [54],
whereas the EAM typically involves tabulated data that are not
easily implemented efficiently in GPU computing.

The core of the EMT potential is a well-chosen reference
system defining the effective medium. The total energy of
the system is the energy of the reference system plus the
difference to the real system. Thus, the EMT total energy is
written as

E =
∑

i

Ec,i +
(

E −
∑

i

Ec,i

)
, (2)

where Ec,i is the so-called cohesive energy, which is the
energy of atom i in the reference system. The idea is now
that the difference term should be small enough to be treated
accurately by first-order perturbation theory. To obtain this

term the reference system must be as close as possible to the
real system.

The real and the reference systems are linked by a “tuning
parameter.” In the first version of the EMT potential, the
homogeneous electron gas was used as the reference system,
with the electron density as the tuning parameter [55,56]. The
EMT version used in the present paper is that of Ref. [51],
for which a perfect fcc crystal is the reference system. Here,
the lattice constant serves as the tuning parameter, i.e., is used
to adjust the environment of an atom such that the average
electron density surrounding the atom matches that of the real
system.

The EMT potential of a pure metal involves the follow-
ing parameters: the negative cohesive energy E0, a charge
density parameter n0, the Wigner-Seitz radius s0 (defined in
terms of the atomic, not the electronic, density), a parameter
η quantifying the influence of the density tail surrounding
a neighboring atom, a parameter λ determined from the
bulk modulus, and finally a quantity determined from the
shear modulus. The density-related parameters n0 and η were
originally calculated self-consistently with reference to the
homogeneous electron gas, while the five other parameters
were determined from experimental or ab initio data. More
details on how the parameters are determined for single and

FIG. 5. Snapshots of configurations at the glass isomorph reference state points at 500 K. The Cu atoms are orange; the Zr atoms are gray.
From left the snapshots are for the 36:64, 50:50, and 64:36 CuZr compositions.
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FIG. 6. Liquid-state radial distribution functions (RDFs) plotted as a function of the reduced pair distance r̃ ≡ ρ1/3r. (a), (b), and (c) give
reduced-unit RDFs along an isomorph for each of the compositions studied. The color coding used is the XMGRACE default ordering, with
black for the data set corresponding to the reference state point, then, at increasing density, red, green, blue, yellow, etc.; orange is the color
given to the 11th data set, representing the highest temperature. The two state points with lower density than that of the reference state point
are purple and brown. Generally, we see approximate isomorph invariance, with some deviation at the first peak maximum and the largest
deviations at the lowest densities (at which the virial potential-energy correlation coefficient drops significantly; compare Fig. 2).

compound systems can be found in Refs. [55,57,58]. The
parameter values for CuZr used in this work (Table I) are those
of Ref. [57], where parameters were adjusted to match DFT-
determined cohesive energies, lattice constants, and elastic
constants of both the pure metals and a Cu50Zr50 alloy.

III. ISOMORPH THEORY

A. Reduced quantities

Structure and dynamics are invariant along isomorphs only
when they are given in a “macroscopic” unit system that de-
pends on the state point in question. The unit system defining
reduced variables reflects the system’s volume V and temper-
ature T as follows. If the particle number density is ρ ≡ N/V ,
the length, energy, and time units are, respectively [42],

l0 = ρ−1/3, e0 = kBT, t0 = ρ−1/3

√
m

kBT
. (3)

Here m is the average particle mass. Equation (3) refers to
Newtonian dynamics; for Brownian dynamics one uses the
same length and energy units but a different time unit [42]. All
physical quantities can be made dimensionless by reference to

the above units. “Reduced” quantities are denoted by a tilde,
for instance,

R̃ ≡ ρ1/3R. (4)

B. Tracing out isomorphic state points

Three compositions were studied, Cu36Zr64, Cu50Zr50, and
Cu64Zr36. Figure 1 presents the state points simulated in
a density-temperature thermodynamic phase diagram. Iso-
morph invariance is never perfect in realistic systems. In
order to estimate to what degree this invariance holds, it is
therefore useful to compare structure and dynamics variations
along isomorphs to what happens along curves of similar
temperature or density variation which are not isomorphs.
We have chosen to make a comparison to isochores (lines
of constant density) with the same temperature variation as
the isomorphs. The isochores studied are the vertical straight
lines in Fig. 1; the isomorphs are the lines with a slope.
The high-temperature state points describe equilibrium liquids
(left); the low-temperature points are glass-phase state points
(right).

We now turn to the challenge of tracing out isomorphs.
Recall that an isomorph is a curve of constant Sex for a
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FIG. 7. Liquid-state RDFs along the reference-state-point density isochores plotted as in Fig. 6. There is a considerable variation of the
structure, being more washed out the higher the temperature is. This is an effect of the increasing thermal fluctuations.

system that obeys the hidden-scale-invariance condition (1)
at the relevant state points. To which degree this condition
is obeyed may be difficult to judge because Eq. (1) always
applies when λ is close to unity, but fortunately, a practical
criterion exists: Eq. (1) applies to a good approximation if and
only if the virial W and potential energy U are strongly cor-

related in their thermal-equilibrium constant-density (NV T )
fluctuations [41]. These fluctuations are characterized by the
Pearson correlation coefficient R defined by

R = 〈�U�W 〉√
〈(�U )2〉〈(�W )2〉

, (5)
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FIG. 8. Maximum values of all RDFs of Figs. 6 and 7, i.e., the RDF values at their first peak, with (a) showing results for the liquids and
(b) showing results for the glasses. The solid symbols represent isomorph data; the open symbols represent isochore data. While the isomorph
values are not invariant, in particular for the Cu-Zr RDFs, for both liquids and glasses the general picture is that of a significantly better
invariance along the isomorphs than along the isochores.

134204-6



EFFECTIVELY ONE-DIMENSIONAL PHASE DIAGRAM OF … PHYSICAL REVIEW B 103, 134204 (2021)

0.
01

1
10

0
Z

r-
M

S
D

Isomorph (liquid)

Cu36 Zr64

(a)

0.
01

1
10

0
Z

r-
M

S
D

Isochore (liquid)

Cu36 Zr64

(b)

0.
2

0.
4

0.
6

0.
8

1.
0

Z
r-

IS
F

Isomorph (liquid)

Cu36 Zr64

(c)

0.
2

0.
4

0.
6

0.
8

1.
0

Z
r-

IS
F

Isochore (liquid)

Cu36 Zr64

(d)
0.

01
1

10
0

C
u-

M
S

D

Cu50 Zr50

0.
01

1
10

0
C

u-
M

S
D

Cu50 Zr50

0.
2

0.
4

0.
6

0.
8

1.
0

Z
r-

IS
F

Cu50 Zr50

0.
2

0.
4

0.
6

0.
8

1.
0

Z
r-

IS
F

Cu50 Zr50

0.1 1 100
t
~

0.
01

1
10

0
C

u-
M

S
D

Cu64 Zr36

0.1 1 100
t
~

0.
01

1
10

0
C

u-
M

S
D

Cu64 Zr36

0.01 1 100
t
~

0.
2

0.
4

0.
6

0.
8

1.
0

C
u-

IS
F

Cu64 Zr36

0.01 1 100
t
~

0.
2

0.
4

0.
6

0.
8

1.
0

C
u-

IS
F

Cu64 Zr36

FIG. 9. Dynamics along the isomorphs and isochores of the liquids. (a) and (b) give data for the reduced mean-square displacement (MSD)
as a function of the reduced time; (c) and (d) give the reduced intermediate incoherent scattering function (ISF) at the wave vector 2πρ1/3

(which is constant in reduced units). There is good isomorph invariance of the dynamics but a significant variation along the isochores (except
in the short-time ballistic region where the reduced MSD by definition is 3t̃2 at all state points).

where angle brackets denote canonical-ensemble averages and
� is the deviation from the thermal average. As a pragmatic
criterion, R > 0.9 is usually used for delimiting where iso-
morph theory predictions are expected to apply [42,43,59].
For the CuZr systems we find that R goes below 0.9 at high
densities in the liquid phase, as well as in most of the glass
phase (Fig. 2), but at most state points studied R is above 0.8.
Thus, it makes good sense to test for isomorph invariance.

Tracing out a curve of constant excess entropy is straight-
forward if one knows how Sex varies throughout the phase
diagram. It is a bit challenging to evaluate entropy, however,
because doing so involves thermodynamic integration (or the
Widom insertion method, which is also tedious). In order to
trace out an isomorph, one does not need to know the value
of Sex, however, and can instead make use of the following
identity:

γ ≡
(

∂ ln T

∂ ln ρ

)
Sex

= 〈�U�W 〉
〈(�U )2〉 . (6)

Here, the quantity γ is the (state-point-dependent) density-
scaling exponent defined as the isomorph slope in a logarith-
mic density-temperature phase diagram like those in Fig. 1.

The second equality sign is a statistical-mechanical identity
that allows for calculating γ from NV T equilibrium fluctua-
tions at the state point in question [42]. Figure 2 shows how
γ varies along the isomorphs of the CuZr systems studied
below, plotted as a function of the density relative to that
of the isomorph reference state point. All cases show simi-
lar behavior, with γ decreasing significantly with increasing
density. This indicates a softening of the interactions at high
densities.

Figure 3 looks more closely into what controls the density-
scaling exponent γ . Figures 3(a) and 3(b) show γ as a function
of the (number) density for, respectively, the liquid and glass
state points. While there is a good collapse when γ is plotted
as a function of density relative to the reference-state-point
density (Fig. 2), that is no longer the case. Interestingly, plot-
ting γ as a function of the pressure results in an approximate
data collapse [Figs. 3(c) and 3(d)]. This finding is consistent
with a recent conjecture by Casalini and Ransom that was
formulated in the entirely different context of supercooled
organic liquids [48]. The glass data are more noisy than the
liquid data, which we ascribe to the fact that a glass consists
of atoms vibrating in a single potential-energy minimum; that
is, just a single so-called inherent state is monitored.
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FIG. 10. Glass-state RDFs plotted as a function of the reduced pair distance r̃. (a), (b), and (c) give reduced-unit RDFs along an isomorph
for each of the compositions studied. The picture is pretty much the same as in the liquid phase, except for the somewhat more noisy data that
reflect the fact that, basically, only a single configuration and its vibrations are probed. Significant deviations from isomorph invariance are
observed for the 64% Cu mixture, both at the highest densities for the Cu-Cu RDF and at the lowest densities for the Zr-Zr RDF.

Equation (6) can be used to trace out an isomorph by
numerical integration, using the Euler algorithm for density
changes of the order of 1% [42] or using the fourth-
order Runge-Kutta algorithm that allows for significantly
larger density changes [60]. While both methods are accu-
rate, they involve many simulations if one wishes to cover
a significant density range. Fortunately, there are compu-
tationally more efficient methods. For instance, isomorphs
of the Lennard-Jones system are, to a good approxi-
mation, given by h(ρ)/T = const, where h(ρ) = (γ0/2 −
1)(ρ/ρ0)4 − (γ0/2 − 2)(ρ/ρ0)2, in which γ0 is the density-
scaling exponent at a selected reference state point of density
ρ0 [61,62].

A general and efficient method for tracing out isomorphs
is the “direct isomorph check” (DIC) [42], which we used to
generate the CuZr isomorphs. The DIC is justified as follows
[41]. Hidden scale invariance [Eq. (1)] implies that the mi-
croscopic excess entropy function Sex(R) is scale invariant,
i.e., a function only of a configuration’s reduced coordinate R̃:
Sex(R) = Sex(R̃) [41]. From the definition of Sex(R) it follows
that U (R) = U (ρ, Sex(R̃)), where the function U (ρ, Sex) is
the average potential energy at the state point with density ρ

and excess entropy Sex [41]. Considering configurations with
the same density ρ and small deviations in the microscopic
excess entropy from that of the given state point Sex, an ex-

pansion to first order leads to

U (R) ∼= U (ρ, Sex) + T (ρ, Sex)[Sex(R̃) − Sex]. (7)

Consider two state points, (ρ1, T1) and (ρ2, T2), with the same
excess entropy Sex and with average potential energies U1 and
U2, respectively. If R1 and R2 are configurations of these state
points with the same reduced coordinates, i.e., obeying

ρ
1/3
1 R1 = ρ

1/3
2 R2 ≡ R̃, (8)

one gets, by elimination of the common factor Sex(R̃) − Sex in
Eq. (7) with T1 ≡ T (ρ1, Sex) and T2 ≡ T (ρ2, Sex),

U (R1) − U1

T1

∼= U (R2) − U2

T2
. (9)

While not of direct relevance for the present paper,
we note that Eq. (9) implies exp[−U (R1)/kBT1] ∝
exp[−U (R2)/kBT2], implying that the two configurations
have the same canonical probability.

Equation (9) leads to U (R2) ∼= (T2/T1)U (R1) + [U2 −
(T2/T1)U1]. For the fluctuations about the respective mean
values this implies

�U (R2) ∼= T2

T1
�U (R1). (10)

134204-8



EFFECTIVELY ONE-DIMENSIONAL PHASE DIAGRAM OF … PHYSICAL REVIEW B 103, 134204 (2021)

0

1

2

3
C

u-
C

u 
R

D
F

Isochore (glass)

1 2 3
r~

0

1

2

3

Z
r-

Z
r 

R
D

F

0

1

2

3

4

5

C
u-

Z
r 

R
D

F

Cu36Zr64

(a)

0

1

2

3

C
u-

C
u 

R
D

F

Isochore (glass)

1 2 3
r~

0

1

2

3

Z
r-

Z
r 

R
D

F

0

1

2

3

4

5

C
u-

Z
r 

R
D

F

Cu50Zr50

(b)

0

1

2

3

4

C
u-

C
u 

R
D

F

Isochore (glass)

1 2 3
r~

0

1

2

3

Z
r-

Z
r 

R
D

F

0

1

2

3

4

5

C
u-

Z
r 

R
D

F

Cu64Zr36

(c)

FIG. 11. Glass-state RDFs along the reference-state-point isochores plotted as in Fig. 10, showing a considerably larger variation.

Equation (10) implies that isomorphic state points may be
identified as follows: First, sample a set of equilibrium config-
urations at state point (ρ1, T1). Then scale these configurations
uniformly to density ρ2. The temperature T2 of the state point
with density ρ2, which is isomorphic to the state point (ρ1, T1),
is now found from the slope of a scatter plot of the potential
energies of scaled versus unscaled configurations. An example
of how this works is shown in Fig. 4.

Because the hidden-scale-invariance property is not exact,
the DIC is less reliable for large density changes than for
smaller ones. We traced out the isomorphs studied below
using step-by-step DICs involving density changes of 5%.
The resulting isomorphs are shown in Fig. 1. The simulated
isomorphic state points are listed in Table II (liquid) and
Table III (glass).

IV. SIMULATION DETAILS

The three compositions studied in this work are CuxZr100−x

(x = 36, 50, 64). For each of these an isomorph was generated
from a state point well into the liquid regime. From this initial
“reference” state point at temperature 1500 K, an isomorph
was traced out using the DIC as described above. The majority
of state points are at a higher density than that of the reference
state point ρ0, but for each isomorph we also generated two
isomorph state points at lower densities to ensure that samples

close to zero pressure were included in the study (compare
Tables II and III).

The NV T ensemble implemented via the standard Nosé-
Hoover thermostat was used to simulate cubic boxes con-
taining 1000 particles. For each state point on an isomorph,
a state point was simulated at the same temperature at the
reference-state-point density; these constitute the isochoric
state points discussed below along with the isomorph state
points. The glass-phase reference state points were obtained
by cooling at a constant rate in 100 000 time steps from the
liquid reference state point at 1500 K to the glass isomorph
reference temperature 500 K. The cooling was implemented
by adjusting the Nosé-Hoover temperature in each step. Since
a time step corresponds to 5.1 fs, this cooling rate corresponds
roughly to 2 K/ps. From the three glass reference state points,
isomorphs were generated by the DIC method in the same way
as for the liquids.

The simulations were carried out in RUMD [54], Roskilde
University’s GPU molecular dynamics package that is op-
timized for small systems. At each state point the initial
configuration was a simple cubic crystal with particle types
assigned randomly at the required ratios. At each state point
of the liquid, 104 molecular dynamics (MD) steps of equi-
libration were performed to melt and equilibrate the liquid.
Afterward, we carried out 106 MD steps for each production
run. For the glass-phase simulations, 105 MD steps of equili-
bration were performed before 107 MD steps of the production
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FIG. 12. Dynamics along the glass isomorphs and isochores. (a) and (b) give data for the reduced MSD as a function of the reduced time;
(c) and (d) give the reduced-unit intermediate incoherent scattering function at the wave vector 2πρ1/3. Because the system is a glass, along
the isomorphs the MSD is constant over a very long time, and correspondingly, the incoherent intermediate scattering function does not decay
to zero. For the isochore state points, raising the temperature takes the system closer to a liquid with a MSD that at long times is proportional to
time and an intermediate incoherent scattering function that decays to zero at long times. The overall picture is that, as for the liquids (Fig. 9),
there is good isomorph invariance of the dynamics but a significant variation along the isochores.

run. The time step in the simulations was 0.5 Å1/2 (u/eV)1/2,
where u is the atomic mass unit.

Figure 5 shows the glasses prepared by cooling the liquids
to the glass isomorph reference state points. There are no signs
of crystallization.

V. STRUCTURE AND DYNAMICS IN THE LIQUID PHASE

To investigate how the structure varies along isomorphs
and isochores for the three CuZr compositions we probed the
RDFs, which in reduced units are predicted to be isomorph
invariant. There are three different RDFs, one for Cu-Cu, one
for Cu-Zr, and one for Zr-Zr. Plotting a RDF in reduced units
implies scaling the distance variable according to the density
[compare Eq. (4)]. This results in peaks at roughly the same
places for all compositions because the scaling corresponds to
taking the system to unit density.

Figure 6 shows the reduced RDFs along the isomorphs,
and Fig. 7 shows similar RDFs along isochores with the same
temperature variation (compare to Fig. 1, showing the simu-
lated state points). Comparing the two, we conclude that the

structure is isomorph invariant to a good approximation but
varies significantly along the isochores. Deviations are largest
for the minority-minority RDFs of the two nonequimolar
compositions. Deviations from isomorph invariance are also
seen in some cases at the first maximum, where the maximum
is generally lowered somewhat with increasing density. This
is an effect that is well understood for pair-particle systems,
for which it derives from the fact that a higher density-scaling
exponent γ implies a steeper effective pair potential and there-
fore less likely particle close encounters. This decrease of the
probability of near encounters results in moving some of the
low-distance RDFs to higher distances when γ is large, which
is the case at low densities. This explanation suggests that γ

of the present non-pair-potential simulations can also be inter-
preted as an effective inverse-power-law (IPL) pair-potential
exponent [44]. For the isochores, there is a general “damping”
of the RDFs at all distances as temperature increases. This
reflects the stronger thermal fluctuations at high temperatures.

Focusing on the height of the first RDF peak, Fig. 8 shows
the peak heights for all the data of Figs. 6 and 7; for ease
of comparison we included here also the analogous data for
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the glass-phase simulations (Sec. VI). The solid symbols are
the peak heights along the three isomorphs, whereas the open
symbols are the peak heights along the corresponding iso-
chores. Clearly, the variation is significantly larger along the
isochores.

Next, we investigated the liquid-phase dynamics. Fig-
ures 9(a) and 9(b) show results for the reduced-unit mean-
square displacement (MSD) along isomorphs and isochores,
respectively. We focus on the majority-atom MSD but found
that data for the minority atom are entirely similar (not
shown). Clearly, the MSD is isomorph invariant and varies
significantly along the isochores. Note that the short-time
ballistic-region collapse seen in all cases follows from the
definition of reduced units; that is, this collapse applies
throughout the phase diagram of any system. Figures 9(c) and
9(d) show similar data for the incoherent intermediate scat-
tering function evaluated at the wave vector 2πρ1/3 (which
is constant in reduced units). Again, isomorph invariance is
clearly demonstrated.

Returning to Fig. 8, in view of Fig. 9, one may ask, Which
structural features are most important for the dynamics? Fig-
ure 8 shows that the majority-component self-RDF shows
the best isomorphic scaling. This suggests that the dynamics
of all atoms are largely determined by the majority species,
i.e., that the two nonequimolar mixtures act as effective one-
component systems.

VI. STRUCTURE AND DYNAMICS IN THE GLASS PHASE

The above investigation was repeated in the glass phase
of the three mixtures. Isomorph theory is traditionally formu-
lated with reference to thermal equilibrium [41–43], but we
ignored this and proceeded pragmatically as if a glass were
an equilibrium system. Each of the three glasses was prepared
by cooling with a constant rate from a configuration at the
reference state point (T = 1500 K) to the temperature 500 K.
For each composition, once a glass configuration was obtained
at the reference state point, we generated an isomorph in
the same way as for the liquid isomorphs by repeated DICs
involving 5% density changes. Again, for comparison we also
probed the RDF and the dynamics at isochoric state points
with the same temperature variation as that of the isomorphs
(Fig. 1).

The RDFs are shown in Fig. 10 (isomorphs) and in Fig. 11
(isochores). The picture is similar to that of the liquid phase:
Overall, good invariance along the isomorphs is seen, in con-
trast to a substantially larger variation observed along the
isochores. This is also the conclusion from Fig. 8, which
shows all the first-peak heights as a function of the temper-
ature.

The dynamics of the glasses is investigated via the MSD
and the incoherent intermediate structure factor in Fig. 12.
A glass consists mostly of atoms frozen at fixed positions,
merely vibrating there. Thus, the MSD is virtually constant,

though some particle motion is discernible at the longest
times. This “glass flow” motion does not appear to be iso-
morph invariant, but we found no systematic variation of it
with the density. This indicates that the noninvariance reflects
statistical uncertainty. Along the isochores [Fig. 12(b)], it is
clear that the glass gradually melts as temperature is increased
when heating from the black curve representing the 500 K
reference state point. The fact that the particles in the glass
virtually do not move except for vibrations is also visible in
the incoherent intermediate scattering function [Figs. 12(c)
and 12(d)], which along the isomorphs stabilizes at a constant
level at long times. In contrast, many of the isochore curves go
to zero at long times, reflecting an increased ease of motion
with increasing temperature that is not achieved along the
isomorphs.

As mentioned, a glass is an out-of-equilibrium system, i.e.,
not a typical member of a canonical-ensemble distribution. It
may be surprising that one can ignore this fact and go ahead
by constructing isomorphs using the direct isomorph check,
resulting in isomorphs that turn out to work basically just
as well as the equilibrium-liquid-state isomorphs in regard to
invariance properties. This confirms that even glass configu-
rations obey the hidden-scale-invariance condition (1), which
is not limited to equilibrium configurations [63].

VII. SUMMARY

This paper has studied three different compositions of the
CuZr system by computer simulations using the computation-
ally efficient EMT potentials. We have traced out isomorphs
in the liquid and glass phases of the three systems. Good
isomorph invariance was observed for structure and dynamics
in both phases, showing that the atoms move about each other
in much the same way at state points on the same isomorph.
This means that the thermodynamic phase diagram of CuZr
systems is effectively one-dimensional. Thus, for many pur-
poses, in order to get an overview of the CuZr system, it
is enough to investigate state points belonging to different
isomorphs. It should be noted, though, that some quantities
like the bulk modulus are not isomorph invariant even when
given in reduced units [64]. On the other hand, most material
quantities are isomorph invariant in reduced units, e.g., the
shear modulus, the shear viscosity, the heat conductivity, etc.
[64].

It would be interesting to confirm the above results using
EAM potentials [37]. Given that the EAM and EMT both have
been shown to nicely reproduce metal properties, we do not
expect significantly different results. Indeed, that isomorph
theory describes metals well has been validated by DFT sim-
ulations of crystals [44].
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