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Long-time structural relaxation of glass-forming
liquids: Simple or stretched exponential?
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ABSTRACT
This paper presents data for the physical aging of the density of squalane upon both non-linear and nearly linear temperature jumps from
states of thermal equilibrium. Invoking the single-parameter-aging scenario [Hecksher et al., J. Chem. Phys. 142, 241103 (2015); Proc. Natl.
Acad. Sci. U. S. A. 116, 16736–16741 (2019)], the linear-response aging relaxation function is extracted from the data. Based on this, it is
shown that the relaxation toward equilibrium follows a simple exponential function at long times; a stretched-exponential function provides
a poor fit. This demonstrates the existence of a terminal relaxation rate for the physical aging of squalane, corresponding to an effective
long-time cutoff in the spectrum of structural relaxation times.
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In condensed matter, relaxation toward equilibrium is often
described by the stretched-exponential function of time t defined1–4

by

R(t) = e−(t/τ)
β

. (1)
Here, R(t) is a relaxation function normalized to go from unity at
t = 0 to zero at long times, τ is a characteristic time, and
0 < β < 1 is the so-called stretching exponent. In many cases, this
function provides an excellent single-shape-parameter fit to data,
involving both linear and non-linear responses to a step perturba-
tion.1–5 The mathematical function [Eq. (1)] is occasionally used
in the “compressed” version with β > 1, for instance, in connec-
tion with the description of ballistic particles in soft colloids.6 We
limit the discussion below to the standard stretched-exponential
function with β < 1, though, which is by far the most common
case.

In the context of viscous liquids and the glass transition, the
stretched-exponential function has been, for years, the standard
function used to describe data because it usually provides a bet-
ter fit than other single-shape-parameter functions. For instance, in
the last 30 years, numerous papers have reported dielectric spec-
tra for glass-forming liquids fitted to the Laplace transform of
the stretched exponential. The Laplace transform of the stretched
exponential displays the characteristic asymmetric loss peak with

an approximate power-law decay above the loss-peak frequency
but a Debye-like, i.e., asymptotic slope unity (in a log–log plot)
increase in the loss below the loss-peak frequency.2,7,8 A Debye-
like low-frequency behavior corresponds to a fairly sharp cutoff
in the relaxation-time spectrum at long times; indeed, if Eq. (1)
is written as a sum of exponentials, there is a rapid decay of the
relaxation-time distribution at long times.9 This is the region in
focus below where we address the following question: Does the
relaxation-time distribution decay continuously to zero at long times
or is there an effective cutoff at a “terminal” (longest) relaxation
time? The latter situation yields exponential relaxation at long times.
From a pragmatic, experimental point of view, it can be hard to
distinguish between relaxations described by a stretched exponen-
tial and those described by a sum of exponentials with a cut-
off at long relaxation times.10–13 This distinction is conceptually
important, however, because many theories for glass-forming liq-
uids predict a stretched-exponential relaxation function with focus
on this function’s long-time behavior.2 Classical examples include
the mode-coupling theory,14,15 models based on many-body inter-
actions,16 trapping models and models based on defect motion,2,17,18

and models involving a random walk on a hypercubic percolative
network.19,20

For any relaxation function R(t), the Kovacs–McKenna (KM)
relaxation rate Γ(t) is defined10,21 by
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Γ(t) = −
d lnR(t)

dt
= −

1
R
dR
dt

. (2)

Note that the relaxation function does not have to be normalized for
calculating Γ(t). Substituting Eq. (1) into Eq. (2) leads to

Γ(t) = β(
t
τ
)
β−1 1

τ
. (3)

The stretched-exponential function has a time-scale-invariant KM
relaxation rate, i.e., one that decreases from infinity at t = 0 to zero at
t =∞ according to an inverse power law in time. This characteristic
feature has been suggested by Ngai to give the physical justification
of the stretched-exponential relaxation function.3 The special case
β = 1 corresponds to a simple exponential relaxation function; in
fact, this is the only function for which the KM relaxation rate is
constant (Γ = 1/τ).

Both the stretched-exponential function and the KM relaxation
rate are concepts often encountered in the field of physical aging of
glasses.10,22–28 Here, the temperature is perturbed while the quantity
monitored as the response may be any material property that can
be measured fast enough that the sample does not relax appreciably
during the acquisition time.

This paper presents such physical aging data for the density
of supercooled squalane following small temperature jumps from
states of thermal equilibrium. Squalane has previously been stud-
ied with mechanical and dielectric spectroscopy29–32 and is a well-
characterized sample known to be a good glass-former. The pur-
pose of the present study is to investigate to which extent data are

well described by the stretched-exponential relaxation function in
the long-time limit for which Γ(t) goes to zero for this function
[compare Eq. (3)].

Studying the long-time limit is experimentally challenging
because it requires both accurate temperature control and accurate
measurements of the quantity that ages. The first issue is addressed
by the use of a Peltier element that keeps the temperature constant
within 100 μK; our setup has the additional advantage of estab-
lishing uniform temperature throughout the sample within a few
seconds.33,34 The second challenge is addressed by measuring the
real part of the dielectric loss at 10 kHz using an Andeen-Hagerling
high-precision capacitance bridge. Details regarding the setup have
been described elsewhere.33,34,36 Squalane has a very small dielectric
loss and, for this reason, the real part of the high-frequency capac-
itance is a linear function of sample density.35–37 This means that
the experiment monitors density changes following a temperature
jump. This feature is not crucial, however, for the arguments given
below in which we use capacitance simply as a quantity that can be
measured fast and accurately.

Figure 1(a) shows the applied temperature protocol. The col-
ored temperature jumps (all of which go to the same temperature,
167.73 K) were selected for further analysis. The smallest tempera-
ture jumps are of magnitude 0.12 K. This is small enough to result in
a virtually linear response, i.e., a relaxation function that is indepen-
dent of sign and size of the temperature jump. Figure 1(b) shows
the measured real part of the capacitance at 10 kHz. The capac-
itance varies by less than 0.4% throughout the experiment. After
each temperature step, before jumping to a new temperature, we

FIG. 1. (a) Temperature protocol applied for monitoring small density changes of squalane. The largest temperature jumps are 1.65 K and the smallest are 0.12 K. The colored
temperature jumps are used in the subsequent data analysis; they all go to the temperature 167.73 K. (b) Real part of the capacitance at 10 kHz. This quantity is proportional
to the density for small density changes.35–37 (c) The data of (b) plotted as a function of the logarithm of the time since each jump was initiated. The data have been corrected
for a minor drift linear in time, as described in the text. The horizontal black dashed line marks the equilibrium capacitance at 167.73 K. (d) Normalized relaxation functions
R(t) calculated from the data in (c) using the difference between the equilibrium value before and after the jump as the normalization factor. The curves do not start at one in
this plot because there is a sizable density change at times shorter than those monitored. The small jumps nearly collapse in this normalized plot, demonstrating that these
are small enough to be almost linear.
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annealed for enough time that the system was equilibrated within
the experimental resolution. The data have been corrected for a
minor drift arising from a very slow flow in the sample cell. The
drift is a geometric effect due to the sample cell diameter being much
larger than the sample gap, which hinders the contraction of the
liquid when the viscosity becomes high. The temperature depen-
dence of the flow time follows the structural relaxation time, but
the flow time is several orders of magnitude larger. The drift is a
small but unavoidable effect when temperature is changed repeat-
edly, and with our resolution, it is necessary to correct for. It is
complicated to account for the drift in detail; since it is a minor
effect, we did a simple linear correction as also described in Ref. 36.
For the first series of small (linear) jumps, we used a correction of
2.5 × 10−21 F/s, while for the larger jumps, the correction was 5.2
× 10−21 F/s. We speculate that the reason for the larger correction
in the latter case is the fact that the sample was heated to a state
with a significantly smaller relaxation time, thus speeding up the
drift.

For each temperature jump, Fig. 1(c) shows the measured
capacitance as a function of the time that has passed after the jump
was initiated. This figure shows more clearly the asymmetry already
visible in Fig. 1(b) between temperature up jumps (red) and down
jumps (purple), with down jumps resulting in a faster and more
“stretched” approach to equilibrium than up jumps. This asymme-
try, which illustrates that even a temperature jump of magnitude less
than 1% may result in a highly nonlinear response, is even more
evident from Fig. 1(d), which shows the relaxation functions nor-
malized to unity at t = 0, R(t), calculated from the data in Fig. 1(c).
In this plot, the small temperature jumps almost collapse, showing
that these jumps are small enough that the response is nearly
linear.

Figure 2(a) is a classical Kovacs plot10 showing the KM relax-
ation rate Γ as a function of the variation of the capacitance relative
to its equilibrium value at 167.73 K denoted by δC/C. As equilib-
rium is approached, δC → 0. In this limit, all curves converge to the
same KM relaxation rate, marked by the horizontal dashed line. The

FIG. 2. (a) Logarithm of the Kovacs–McKenna (KM) relaxation rate Γ defined in Eq. (2) plotted as a function of the relative deviation of the capacitance from its equilibrium
limit denoted by δC/C. The long-time limit corresponds to the middle part of the figure at which δC/C = 0. For all jumps, the KM relaxation rates converge to the same number
(horizontal dashed line). The inset magnifies the long-time behavior. (b) Logarithm of Γ vs the normalized relaxation function R. The long-time limit corresponds to R → 0.
(c) Logarithm of the KM relaxation rate after being linearized as described in the text plotted vs R. All data superpose. This demonstrates that the physical aging of squalane
density is described by the single-parameter-aging scenario.40,41 The full green and black dashed curves are stretched-exponential functions with β equal to 0.5 and 0.8,
respectively. These functions represent the relaxing part of R(t) [Eq. (5)], i.e., the relaxation taking place after the “instantaneous” jump that cannot be time resolved in the
setup used. The green curve was optimized to fit the short-time data, and the black dashed curve was fitted to the long-time data. (d) Same as in (c) plotted vs the logarithm
of R allowing for a focus on the long-time behavior.
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inset magnifies the data close to equilibrium, focusing on the long-
time behavior. Note that even very close to equilibrium, where δC/C
is just 0.1 per mille from its equilibrium value, there is an order of
magnitude difference in the KM relaxation rate between the larger
(non-linear) jumps and the small jumps; even the small nearly linear
jumps do not superpose. The latter is a consequence of the non-
exponential nature of the relaxation, while the former results both
from the non-linearity and the non-exponentiality of the relaxation.
If one did not have access to accurate long-time data, an extrapo-
lation of the KM relaxation rate curves would appear to show the
existence of a so-called expansion gap.10 This point has been dis-
cussed in detail by Simon and collaborators, concluding that there
is no genuine expansion gap, merely an apparent one.38,39 This is
confirmed in Fig. 2(a). Figure 2(b) shows the KM relaxation rate
plotted as a function of the normalized relaxation function R; here,
long times correspond to R→ 0. In this plot, the small-jump curves
nearly collapse, which reflects that these are close to being linear. The
apparent expansion gap is only seen in the non-linear jumps.

We now apply the single-parameter aging scenario.40,41 It is
assumed that physical aging is linear when described in terms of
the so-called material time, even when the curves show strong non-
linearities. The material time is the time measured with reference to
the system’s “internal clock,” which becomes gradually slower for a
temperature down jump and gradually faster for a temperature up
jump. If one has access to the clock rate (relaxation rate) during
aging, the material time is its time integral. The single-parameter
aging scenario assumes that the quantity monitored during aging
and the material-time clock-rate activation energy are both con-
trolled by the same parameter Q,40 which may be thought of as
the fictive temperature traditionally used in physical-aging stud-
ies,22,26,27 although the actual nature of Q is irrelevant. The result is
that the KM relaxation rate is a function of R, which is the same for
all jumps, times an exponential function of the product of R and the
jump magnitude ΔT.41 Thus, the single-parameter assumption leads
to the prediction

Γ(R) = ψ(R) ekΔT R. (4)

We here follow the tradition in physical-aging studies of considering
jumps going from temperature T0 + ΔT to temperature T0.

Equation (4) linearizes data in the sense that log(Γ) − cΔTR
(where c = k/ln 10) is the same function of R for all jumps.41 This
gives the truly linear-response limit of physical aging corresponding
to ΔT → 0. The small jumps in the present study are nearly lin-
ear, and similarly to the procedure applied in Ref. 37, they almost
directly provide ψ(R). Figure 2(c) shows that all curves, indeed, col-
lapse when plotted as suggested by Eq. (4) (c = 0.6 K−1); the collapse
gives the linear curve. This demonstrates single-parameter aging for
squalane and that the applied procedure identifies the correct linear
limit. The advantage of deriving the linearized data from larger tem-
perature jumps in this way is that the signal is higher, and thus, the
long-time behavior is resolved better.

It is now possible to investigate more closely the shape of
the linear-response limit of the physical-aging relaxation function,
the limit in which the material time is proportional to the actual
time. Figure 2(c) shows the predictions of two different stretched-
exponential functions for the relaxing part of the linear-response
aging function, i.e., for the following ansatz:

R(t) = R0 e−(t/τ)
β

. (5)

We here allow for an “instantaneous” change of R(t) right after the
temperature jump, reflected in R0 < 1.41 The green curve in Fig. 2(c)
is a β = 0.5 stretched-exponential function fitted to the short-time
data with τ and R0 as free parameters, and the black dashed curve
is a β = 0.8 stretched exponential fit focusing on fitting the long-
time data. Neither function fits well. The reason is that if the varia-
tion of Γ with R is to be fitted well, β cannot be close to unity. On
the other hand, if β is not close to unity, the predicted long-time
KM relaxation rate bends over and goes visibly to zero within the
experimental window [recall that a stretched exponential predicts
Γ → 0 as t → ∞, compare Eq. (3)]. Figure 2(d) is the same as
Fig. 2(c) but with a logarithmic R axis, highlighting the long-time
behavior. To be clear, the above data analysis is based on the
Narayanaswamy aging formalism, and the conclusion relates to the
nature of the kernel of the material-time convolution integral, i.e., it
is the linear [or linearized through Eq. (4)] relaxation function that
is shown to deviate from a stretched-exponential behavior at long
times.

Data can be fitted by several different functions, but usually
these would involve more than a single dimensionless shape param-
eter. An obvious question is whether a better function exists for
fitting data, still involving just one shape parameter. Figure 3 com-
pares the linearized aging data to the prediction of the product of
a single exponential and a stretched exponential with β = 0.5, the
“exponential

√
t relaxation function” introduced in Ref. 34,

R(t) = R0 e−(t/τ)−α
√

t/τ . (6)

FIG. 3. (a) The data of Fig. 2(c) fitted to the exponential
√

t relaxation function of
Eq. (6) with τ = 1800 s, α = 2.5, and R0 = 0.64. (b) shows the same data with a
logarithmic R axis. The long-time limit of log(Γ) of the fit is log(1/1800) = −3.25,
which is seen in (a) but not in (b) because this limit is reached many decades
below the scale of the logarithmic R axis.
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The fit is significantly better than that of a stretched exponential.
There is a small discrepancy between the fit and data at R values
below a few percent. These data points are sensitive to the exact sub-
traction of drift discussed above; thus, the discrepancy may be due to
a small systematic error in the data. The exponential

√
t relaxation

function [Eq. (6)] fits data better than the stretched-exponential
function because the former has a terminal relaxation rate. Inci-
dentally, the Laplace transform of Eq. (6) has the same asymptotic
characteristics as the alpha relaxation part of the analytical func-
tion introduced in Ref. 32, which fits well with the dynamic shear
modulus of squalane.

In summary, high-precision data demonstrate the existence of
a terminal relaxation rate in squalane for the physical aging of den-
sity, implying that the long-time approach to equilibrium follows a
simple exponential in time. While aging data for many years have
been fitted by relaxation functions with more than a single shape
parameter and a long-time cutoff,11,12 to the best of our knowledge,
the data presented here provide the first direct experimental proof
that long-time aging data cannot be fitted by a stretched exponen-
tial. The reason is that the stretched-exponential function does not
have a terminal relaxation rate, i.e., a long-time cutoff in the relax-
ation time distribution. Mechanisms for such a cutoff have been
discussed, e.g., in Refs. 42 and 43. More generally, one may specu-
late that the largest barriers for molecular motion are effectively cut
off when the structure of a highly viscous liquid relaxes and, as a
consequence, lowers these barriers. We conjecture that the existence
of a terminal relaxation rate is a general feature of glass-forming
liquids, which any reliable theory of viscous liquid dynamics must
account for.34,42–47

This work was supported by the VILLUM Foundation’s Matter
(Grant No. 16515). The authors thank Niels Boye Olsen for helpful
comments on the manuscript.
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