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A B S T R A C T

The dynamics of bacterial growth and concentrations of oxygen and carbon dioxide in the headspace of modified
atmosphere packaged (MAP) meat is studied. The work is based on extensive long-time storage experiments on
pork chops lasting up to 42 days at temperatures 0 °C and 5 °C and four different headspace gas mixtures with
10%, 20%, 40% and 70% oxygen and 30% carbon dioxide. The headspace dynamics is modelled. The model
includes oxygen consuming biochemical processes in the meat and also the coupling between headspace and
meat, specifically, the diffusion of oxygen and carbon dioxide into the meat. The model is parametrized from the
experimental data, and captures the experimental results. It is concluded that the oxygen consuming processes
inside the meat packed with MAP consume less than 1% of the initial oxygen in the headspace, and are not
important for the headspace dynamics. On the other hand, the dissolution of carbon dioxide has a significant
effect. This is due to the relatively large solubility of carbon dioxide compared to oxygen. From the model we
find and characterize three distinct phases behind the headspace volume reduction observed. As the model is
dynamical and mechanistic it can be used to give information about the retail-packed fresh meat under different
oxygen containing atmospheres, effects of leaks, and more.

1. Introduction

A long shelf life requires maintaining quality parameters such as
color, odour, and texture at optimum as well as keeping it safe to eat for
as long as possible (Subramaniam and Wareing, 2016). Improved pre-
dictive accuracy of the shelf life will help minimize waste (Wikström
et al., 2014; Quested et al., 2013) by reducing the incidence of dis-
carding food which has reached its labeled shelf life, but is still both
appealing and safe to eat. Many factors affect shelf life, through many
mechanisms, making accurate prediction of shelf life challenging. The
first step towards more accurate shelf life labelling is understanding the
most important mechanisms that cause food quality and safety to de-
grade, and how they interact with each other.

Mathematical modelling will play an increasing role (Riva et al.,
2009; Chaix et al., 2014, 2015; Belay et al., 2016) in improving shelf
life, both in understanding the basic shelf-life determining processes,
and in developing tools to estimate the shelf life for different condi-
tions. We can start to gain better understanding by modelling the
physical, chemical and biological processes that play a role for the shelf
life of meat. Here physical processes include the transport of water,
oxygen, carbon dioxide and nitrogen by diffusion in and out of the food
product (Zaritzky and Bevilacqua, 1988); chemical processes include

oxidation of lipids, proteins, and mitochondrial respiration (Tang et al.,
2005), and biological processes are the growth of spoilage and patho-
genic bacteria (Van Boekel, 2008; Jay et al., 2005; Aberle et al., 2012).
A large literature of modelling such processes in food exists, see for
example Zaritzky and Bevilacqua (1988); Saenz et al. (2008), although
to our knowledge no work has involved including all three kinds of
process in the same model.

In the case of fresh meat typical packing techniques are Modified
Atmosphere Packaging (MAP) (McMillin, 2008; Singh et al., 2011).
With MAP the gas composition of the headspace environment is mod-
ified, typically, by having large partial pressures of oxygen and carbon
dioxide compared to ambient conditions. In contrast to other foods such
as fruits and vegetables, where a low oxygen concentration is typically
required, oxygen concentrations in MA packaged meat can vary from
zero up to 70–80% in order to preserve the red color of the meat by
binding to myoglobin (Antonini and Brunori, 1971).

Previous work (Tofteskov et al., 2017) described the transport of
oxygen in meat and its reactions with myoglobin. The boundary con-
dition was a fixed concentration of oxygen at the surface of the meat.
Thus, there was in effect an unlimited supply of oxygen. In the present
work we model the headspace dynamics, giving a more realistic meat-
headspace boundary condition for common storage conditions. The
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model includes bacterial growth, the associated oxygen consumption,
and carbon dioxide production in the headspace. Furthermore, head-
space gasses penetrate the meat surface, and are dissolved and con-
sumed by various biochemical processes. We also include these pro-
cesses in the model in order to investigate the importance of these. The
model involves several parameters, and we extract these from the ex-
perimental data for pork. It is important to point out that the model is
general can be applied to other meat types by reparametization.

2. Materials and Methods

The experimental part of this work was a meat storage experiment
lasting 42 days where fresh pork chops were stored at two different
temperatures and under four different gas environments. On the day of
slaughter, 45 pig carcasses were selected according to gender (female)
and carcass weight (79–87 kg). The day after slaughter, pH was mea-
sured in the left loin (5.5–5.6) and both left and right sides of 30 car-
casses were selected. Thereafter, the carcasses were cut and de-boned
into loins. The loins were crust frozen in an impingement freezer and
then sliced into 150 g chops with an approximate thickness of 1.75 cm
and volume 244 ± 5 cm3. Chops with common cutting surface were
packed pairwise in boxes and then transported at 0∘C to the Danish
Meat Research Institute (DMRI) packaging pilot facility, where the meat
was prepared and packaged on that same day. The temperature during
transport was measured with two Testo T174 temperature loggers.

Packing and storage: Each pair were then MA-packed in a tray with
specifications K2190e53H MAPET II (Færsh Plast, Holstebro Denmark).
The film was a 45 μm anti-fogging film TOPLEX HB B-PE 45 F (Plastopil,
Almere, Netherlands) using a tray sealer Multivac, T200, Denmark. The
water vapour transmission rate (WVTR) for this film is 10 gm−2 per
day at 90% relative humidity and 38 °C, and the transmission rate for
oxygen at 23°C is 4 cm3m−2 per day (Plastopil, 2014). The total tray
volume was 900 cm3 resulting in a headspace volume to meat volume
ratio of approximately 2.7. All four gas compositions were mixed onsite
with a PBI-mixer and contained 30% carbon dioxide (lying in the in-
terval used by the industry) and nitrogen (filler gas). To study the
system dynamics and model perfomance under different oxygen con-
ditions the initial oxygen levels were set to 10%, 20%, 40% and 70%.
The samples were then stored in darkness for up to 23 days at 5 °C and
for up to 42 days at 0 °C. For each storage temperature samples were
collected 9 times during the storage period.

At each sampling day, where the day index indicates the day after
slaughter, the pork chops were analyzed for psychrotrophic bacteria
(6.5 °C/10 days, PCA). When sampling for the psychrotrophic plate
count, 10 cm2 of the lean meat surface was marked, removed and
transferred to a stomacher bag. To each bag, 100mL of buffered pep-
tone water was added, and the bag was stomached for 1min. The
samples were then diluted, plated on PCA and incubated at 6.5 °C for 10
days (NMKL No. 86, 5th Ed., 2013).

Oxygen and carbon dioxide gas compositions were measured using a
Checkmate 3, PBI Dansensor, Denmark with tolerance of± 2%. Once a
sample is taken the entire package was discarded. This then leads to a
total of 480 samples covering the four gas mixtures and two tempera-
tures.

3. Mathematical model

A schematic presentation of the system is shown in Fig. 1. We model a
section of the meat-surface system. The gas is assumed to be well mixed
which means that there are no gradients present in the headspace. This
assumption is reasonable since the diffusive processes in the gas phase
happen on a fast time scale compared to the time scales of interest in the
meat. For example, in the meat the diffusion coefficient for oxygen is in
the order of 10−5 cm2h−1 (Chaix et al., 2014), whereas in air it is
18 cm2 h−1 at 0 °C (Lide, 1976), that is, for a package height of 5 cm the
time for diffusion to equalize the concentration is around 1 h.

Nitrogen gas is an inert gas and it is assumed to have no effect on the
meat bio-chemistry. However, nitrogen will dissolve in the meat
leading to a reduced head-space volume. It is possible to estimate this
reduction using the solubility of nitrogen in water which is 0.03 g per
kg water at 0 °C and 1 atm (Lide, 1976). The meat volume is 0.24 L,
hence, the volume of the dissolved nitrogen is around ×5 10 3 L, which
is less than 0.8% of the total headspace volume. Since this reduction is
relatively small compared to the reduction due to carbon dioxide ab-
sorption we do not include the nitrogen gas dynamics in the model. The
film used in the experiment has a very low permeability with respect to
both oxygen and water vapour (see Materials and Methods section),
hence, we expect a very low permeability for carbon dioxde as well, and
the gas flow out of the package can be considered to be zero.

Bacteria are primarily concentrated on the surface of the meat
(Selgas et al., 1993) although a small anaerobic microbiological activity
is also present inside the meat (Aberle et al., 2012). Therefore, the
bacterial growth rate depends primarily on the concentration of avail-
able of oxygen and carbon dioxide in the headspace, and the growth
process consumes oxygen and produces carbon dioxide (Chaix et al.,
2014). The meat structure is assumed to be homogeneous on the small
cuts we study, that is, we do not consider the effects of fat, bones and so
forth. Finally, the model does not include effects of the changing pH-
values inside the meat and on the meat surface.

In the model we include oxygen and carbon dioxide dissolution and
consumption in the meat. Thus, the dynamics is given by five dynamical
variables, namely, the number of bacteria per unit area, and the amount
of oxygen and carbon dioxide in both the headspace and the meat. We
will make an approximation (see later) such that the oxygen in the meat
can be expressed by the headspace oxygen, i.e., the final model has four
dynamical variables.

3.1. Bacterial growth and headspace dynamics

The experiments were performed under oxygen-rich conditions at
temperatures 0 °C and 5 °C, and we therefore assume that the main
bacterial growth is due to psychrophilic aerobic bacteria growth on the
meat surface (Aberle et al., 2012). This also includes microaerophilic
bacteria that can grow in reduced oxygen concentrations (Molin, 2000).
In the following N denotes the number of bacteria per unit area on the
meat surface. Bacterial growth is typically prefaced by a lag phase with
virtually no growth. An exponential like growth then occurs up to a
carrying capacity, Nmax. As the bacterial concentration N approaches
Nmax the growth rate slows down and the population enters a stationary,

Figure 1. [Color online] Schematic illustration of the system. The gas (top)
with volume =V 0.66h L is assumed to be a homogeneous mixture of carbon
dioxide, oxygen and inert filler gas. The meat structure is homogeneous, but we
do not assume a homogeneous distribution of the dissolved oxygen in the meat.
The meat has volume =V 0.24m L. On top of the meat is a thin layer of bacteria
with area Am =163 cm2 that consumes the oxygen from the packaging and
produce carbon dioxide on formation. Lh and Lm denote the headspace and
meat heights, respectively, such that =V A Lh m h and =V A Lm m m. N is the
number of bacteria per unit square centimeter, estimated experimentally in
terms of colony-forming units (CFU). The values for volumes and area are taken
from the experimental setup.
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or saturation, phase. The growth stage is modelled by what are known
as primary models (Chaix et al., 2015). Primary models are sufficient to
model the bacterial growth if the surrounding conditions are constant,
i.e., if the system is defined by constant oxygen concentration, pH va-
lues, etc. Secondary models are needed to include these changing en-
vironmental conditions (Chaix et al., 2015). As our primary bacterial
growth model, we use the simple logistic differential equation
(Zwietering et al., 1990), however, note that this model does not ex-
plicitly model the lag time. The differential logistic equation reads

=N
t

µ N N
N

d
d

1 .max
max (1)

µmax is the maximum rate of change and depends on the oxygen and
carbon dioxide concentrations (Chaix et al., 2015; Baez and Shiloach,
2014; Ercolini et al., 2006) and is given by the secondary models. The
model parameters and their units are listed in Table 1 and Fig. 1.

To include the dependence of carbon dioxide and oxygen we need a
secondary model and we choose the standard γ-factor approach (Chaix
et al., 2014). First, the rate of change, N td /d , increases as a function of
the oxygen for low oxygen concentrations, but will decrease when the
oxygen levels are very high as oxygen then acts as an inhibitor for
growth (Höll et al., 2016; Molin, 2000). Carbon dioxide we treat as an
inhibitor (Geysen et al., 2006) such that the maximum rate of change
decreases monotonically for increasing concentrations of carbon di-
oxide. µmax can then be written as a product of these two mechanisms

=µ µ ,max opt O CO2 2 (2)

where µopt is a coefficient independent of the oxygen and carbon di-
oxide concentrations. We express the oxygen dependence, O2, by the
functional form

=
+

C
C

4[O ]
( [O ])

.O
2 ox

ox 2
22 (3)

Note, this function is unity when , the optimal value, and goes to
zero at both lower and higher oxygen concentrations. In this way we
have included the possible inhibitory effect of oxygen at large oxygen
concentrations.

The inhibition, CO2, is simply linear with respect to carbon dioxide,
see for example Geysen et al. (2006):

= 1 [CO ]
CO

,CO
2

2,max
2 (4)

where CO2,max is a model parameter.
Next we model the total amount of oxygen, nO2, and carbon dioxide,

nCO2, in headspace. To this end, we need an expression for the bacterial
respiration rate. This has not been studied very extensively according to
Chaix et al. (2015), but work by Riedel et al. (2013) indicates that
oxygen consumption rate per bacterium is much greater in the growth
phase than in the stationary phase (Chaix et al., 2015; Garcia-Ochoa
et al., 2010). This is confirmed for oxygen levels 10–40% in our ex-
periments. To show this we define the relative oxygen consumption as

=n n t n1 ( )/ (0)O O O2 2 2 which can be found directly from the ex-
perimental data. Fig. 2 (a) shows the rate of headspace oxygen con-
sumption per bacterium versus the bacterial concentration N for oxygen
levels 10–40%. Note that both axes are logarithmic. It is clearly ob-
served that for small bacterial concentrations (growth regime) the
consumption rate per bacterium is large compared to when the bac-
terial concentration is close to the bearing capacity. At the 70% O2 level
the data are very noisy and this conclusion cannot be confirmed for this
particular case.

From Fig. 2 (b) it is further seen that the oxygen consumption is not
proportional with the bacterial concentration, and therefore n td /dO2 is
not proportinal to N td /d . This we attribute to the bacteria adaption to
the changing environment (the bacteria become less aerophilic) (Höll
et al., 2016), and not due to processes in the meat. Since n td /dO2 is not
proportional to N td /d , we can in general let n td /dO2 be proportional to
f N N t( ) d /d . The data in Fig. 2 (b) suggest that f follows a power law
with respect to N, where the exponent is 1 with < <0 1. From Eq.
(1) we then have

=
n

t
k A µ N N

N
r

d
d

1 ,m
O

resp max
max

O
2

2 (5)

where kresp is the proportionality constant, Am is the surface area (see
Fig. 1) and rO2 describes the rate of change due to processes in the meat;
we address the latter below.

Respiration is characterized by a one-to-one relationship between
the bacterial consumption of oxygen and the production of carbon di-
oxide (Andersen and von Meyenburg, 1980), i.e., in the headspace we
have =n nd dCO O2 2. This gives us the following dynamics for the
headspace carbon dioxide

Table 1
Top section: Best fit parameter values from data. Middle section: Estimated
parameter values. Bottom section: Literature values from Chaix et al. Chaix
et al. (2015).

0 °C 5 °C

Cox [M] 8.9× 10−3 10.1× 10−3

µopt [h−1] 1.4× 10−2 3.6× 10−2

kresp [mol cm−2(1−α) CFU−α] 3.7× 10−9 2.8× 10−9

N (0) [CFU cm−2] 77 128

k2 [L h−1] 0.05 0.5
k Dcon [cm h−1] 0.01

α 0.5
Nmax [CFU cm−2] 107

SCO2 [M atm−1] 3×10−2 2×10−2

CO2,max [M] 0.11
SO2 [M atm−1] 1.4× 10−4

Fig. 2. (a) Relative oxygen consumption rate per bacterium versus bacterial concentration. The oxygen consumption is defined as =n n t n1 ( )/ (0)O2 O2 O2 . (b)
Headspace oxygen consumption versus bacterial concentration. In both (a) and (b) the temperature is 0 °C, and the data shown are averages over five samples.
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where rCO2 is the drain due to carbon dioxide solubility in meat.

3.2. Dynamics in the meat

Equations (1), (5) and (6) are the dynamical equations for the
headspace dynamics. The two terms rO2 and rCO2 account for the cou-
pling to processes in the meat. Oxygen will diffuse into the meat and
chemical processes like oxidation of fats, vitamins and myoglobin take
place. Mitochondrial respiration is another important oxygen con-
suming process (Tofteskov et al., 2017). To simplify the problem we let
the chemical oxygen consumption in the meat be linearly dependent on
the concentration of oxygen, and we therefore have the following re-
action-diffusion equation for the oxygen concentration in the meat

= +
t

k D
x

[O ] [O ] [O ] ,2
con 2

2
2

2 (7)

where D is the diffusion coefficient of oxygen in meat and kcon is the rate
constant governing the chemical consumption in the meat. Recently, we
have shown (Tofteskov et al., 2017) that the oxygen profile reaches a
steady-state on a time scale of hours at 20 °C. While temperatures here
are lower we assume that the quasi steady-state condition =[O ] 02 is
reached on time scales smaller than those we study here. Then Eq. (7)
reduces to an ordinary differential equation

=
x

k
D

d [O ]
d

[O ] 0 ,m
2

2
2 2 (8)

with boundary conditions [O ](0)2 at =x 0 and =L[O ]( ) 0m2 at =x Lm,
where Lm is the meat depth, see Fig. (1). The later condition is met if the
meat thickness is sufficiently large such that e 0k D L/ mcon . This
boundary value problem has the solution

= =x e S RT
n
V

e[O ]( ) [O ](0) ,k D x

h

k D x
2 2

/
O

O /con
2

2 con
(9)

where SO2 is the solubility of oxygen in meat, and R the gas constant.
From this concentration profile we can evaluate the total oxygen con-
sumption in the meat by integration and by noting that the consump-
tion is linear with respect to the oxygen concentration

= =r k A x x S RT
k D

L
n[O ]( )d .m

L
O

h
O con 0 2

con
O

m
2 2 2 (10)

Note that by introducing the quasi steady-state condition we can avoid
including the dynamics of the oxygen in meat explicitly.

Finally, we address the issue of carbon dioxide in the meat. First, we
will ignore any possible chemical reaction with carbon dioxide in the
meat, and also assume that the carbon dioxide produced in the mi-
tochondrial respiration is negligible compared to the amount of carbon
dioxide coming from diffusion. Therefore, the governing process behind
the carbon dioxide dynamics in the meat is simple diffusion. The dif-
fusion coefficient for carbon dioxide, DCO2, is independent of the type of
product and found to be in the range 1–543mm h2 1 (Chaix et al., 2014).
Using median value for the diffusion coefficient the characteristic pe-
netration depth, = D t2 CO2 , is then around 10 cm after 24 h. Thus,
after one day ℓ is one order of magnitude larger than the meat depth
L 1.8m cm, and we assume that there are no relevant carbon dioxide
gradients in the meat on the time scales we investigate here. Of course,
on smaller time scales the carbon dioxide dynamics should be modelled
using the diffusion equation. Furthermore, we let the carbon dioxide be
fully dissolved, thus, the equilibrium concentration of carbon dioxide in
the meat is given by = S p[CO ]2 CO CO2 2, where SCO2 is the solubility
coefficient and =p n RT V/ hCO CO2 2 the partial pressure of CO2 in the
headspace. In the linear regime we can then write the carbon dioxide
drain as

=r k
S RTn

V
n
V

,
h

m

m
CO 2

CO CO CO
2

2 2 2

(11)

where k2 is the rate constant and n m
CO2 is the amount of carbon dioxide in

the meat volume Vm. This linear kinetics does not properly account for
diffusion, but it does account correctly for the equilibrium solubility
and assigns a reasonable time scale to the absorption, which is sufficient
to match the available data.

Substituting Eqs. (11) and (10) into Eqs. (5) and (6) we arrive at the
final model
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where =µ µ n n( , )max max O CO2 2 can be written in terms of the total
amount of oxygen and carbon dioxide in the headspace rather than
concentrations

=
+ +( )µ n n µ

n C
V C n V C n

n
V

,
4

/ 2
1

CO
.

h h h
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O ox

ox
2
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ox O

CO
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2 2

2

2 2

2

(16)

A short comment is in order here. First, there are two competing
processes consuming oxygen, namely, bacterial growth and the mi-
tochondrial respiration in the meat. Due to the latter we have n 0O2
as t . Thus, mitochondria in the meat can consume, given sufficient
time, arbitrarily large amounts of oxygen, which is not the case in
reality, hence, the model is only valid up to intermediate times. To our
knowledge, no detailed data of the post mortem mitocondrial lifetime is
available, so we cannot model the changing mitochondria activity in
greater detail.

4. Parameter estimation

From literature values (Chaix et al., 2015) we can find the solubi-
lities SO2 and SCO2, and CO2,max. The parameters k D ,con , Nmax, and k2
are estimated from Fig. 2 and raw data. Nmax is set to 107 CFU cm−2 in
agreement with data and we have noticed that k Dcon has to be suf-
ficiently small (less than 0.02 cm h−1) to keep the observed anti-cor-
relation between the oxygen and carbon dioxide time series. From
Fig. 2 we set = 1/2, and k2 is set such that the CO2 time series ap-
proximately agrees with the first experimental data point, see Fig. 4 and
Table 1. Our model is then a function of parameters,

= C µ k N( , , , (0))ox opt resp , time, t, and initial conditions n n(0), (0)O CO2 2
and n (0)m

CO2 . Note, that we treat the initial bacterial concentration as a
fitting parameter. Also, note that the experiment provides data for the
bacterial concentration as well as oxygen and carbon dioxide con-
centrations in headspace, but not for the carbon dioxide dissolved in the
meat, and we can only use the former three quantities for the fitting
procedure.

For each temperature and sampling times … …t t t, , ,i1 2 we have five
samples for the three quantities. The sample means of these are denoted
µ t µ t( ), ( )N nlog10 O2

, and µ t( )nCO2
and the standard deviation

t t( ), ( )N nlog10 O2 and t( )nCO2 . Importantly, for the bacterial con-
centration we use the logarithm when determining the contributions to
the cost function. In order to estimate the best fit parameters of the
model, i.e., to determine the best parameter set θ, we then define the
standard cost-function
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where N g t( , , ), n g t( , , )O2 and n g t( , , )CO2 are model output for
specified initial conditions and parameters θ at time t. The variable gn is
a label for the particular mixtures, i.e., the cost function includes all the
available data at a given temperature. Note that fitting is done sepa-
rately for each temperature. Using appropriate initial parameter values
and the Nelder-Mead simplex algorithm (Nelder and Mead, 1965; Eaton
et al., 2015) we find a local minimum for the cost function. The cost
function for this first estimated set of parameters is denoted =C C ( )0 0 .

While a “best-fit” set of parameters can be found by minimizing the
cost function, these are of limited use by themselves. One problem
which frequently arises is the presence of sloppiness in the parameters,
meaning that a parameter, or a particular combination of parameters,
can be varied significantly while changing the cost function negligibly.
It is important to have a quantitative measure for the accuracy of the
parameters, and even more so, for the accuracy of the model output. To
investigate the statistical uncertainties we apply the Metropolis Monte-
Carlo algorithm. Here the parameters θ iteratively vary in parameter
space through = +new old , where is a vector with components of
small uniformly distributed random numbers with zero mean; this is
explained further below. The cost function, Cnew, is then evaluated with
these new parameters, which are always accepted if the cost function is
smaller than the current one, Cold. Otherwise the new parameter set is
accepted if

<R C C
T

exp
s

new old

(18)

where R is a random number picked from a uniform distribution be-
tween 0 and 1, and Ts is here called the sampling temperature as it is
analogous to temperature in statistical physics (Frederiksen et al.,
2004). A natural choice of Ts is the minimum (best-fit) value C0 of the
cost function scaled by half the number of parameters (Frederiksen
et al., 2004), i.e. =T C /2s 0 . We only sample in the positive parameter
subspace, and the variance of is set such that the acceptance ratio is
approximately one half.

By using the Metropolis Monte Carlo algorithm iteratively, we
generate an ensemble of 2 × 104 parameter sets which effectively
samples the parameter space around the best fit, taking the full non-
linearity of the cost function into account. From this ensemble we can
evaluate both a model output ensemble mean and variance, which al-
lows for well defined estimates of the model prediction uncertainties. In
Fig. 3 (a) we plot, as an example, the histogram for Cox at T=0 °C. It is
interesting to see that the distribution is not simply Gaussian, and that
the ensemble sample mean does not equal the mode (or most probable
value) in the distribution.

For both temperatures, T=0 °C and 5 °C the Metropolis Monte
Carlo method did find another cost function minimum, albeit with
approximately the same parameter values. In Table 1 we list the best-fit
parameters, the parameters estimated from data, and the parameters
obtained from the literature (Chaix et al., 2015).

5. Results and discussion

In Fig. 4 experimental non-averaged raw data (filled symbols) are
plotted together with model results (lines) for both temperature =T 5
°C (a)-(d) and T=0 °C (e) and (f). Model results are shown using best fit

parameters (black lines), and model output ensemble mean (brown
lines). First, we see that the model captures the experimental results
quite well, both for varying gas mixtures and varying temperatures. The
choice of best fit parameter or ensemble mean values does not sig-
nificantly change the model output. Secondly, the effect from the
carbon dioxide dissolution is clearly observed in the headspace; this is a
fast process, and the meat is saturated within approximately 24 h in
accordance with our assumption above. Thirdly, the oxygen decrease is
strongly correlated with the carbon dioxide increase, that is, the bac-
terial respiration. This indicates that the oxygen dynamics is governed
by the bacterial activity and that the consumption in the meat is very
small.

We have also indicated the model output standard deviation for the
gases, see dashed lines in Fig. 4 (b), (d), and (f). At the end of the data
sampling the uncertainty is around 5 percentage points for all gas
compositions. The model output for the bacterial concentration is very
skewed and, as is the case for the experimental data, associated with
large statistical uncertainties. This is highlighted in Fig. 4 (a) where
both the model output median and mean are shown. To give an esti-
mate of the statistical uncertainty the first quartile, Q1, and third
quartile, Q3, are also plotted. For clarity the median and quartiles are
omitted in Fig. 4 (c) and (e).

To quantify the oxygen consumption in the meat further, we write
the total consumed oxygen in the meat as (see Eq. (10))

=n t S RT
k D

L
n t t( ) ( )d .m

h

t
O O

con
0 O22 2 (19)

According to the model, for all headspace mixtures and tempera-
tures the consumed oxygen in the meat at the end of the experiment is
less than 1% of initial oxygen in headspace. In fact, the consumption is
so low that we can at best estimate an upper limit for this drain through
the relevant parameters, namely, <k D 0.02con cm h−1 as mentioned
above. In contrast to this approximately 15% of the initial carbon di-
oxide in headspace will be dissolved in the meat; this depends of course
on the meat to headspace ratio and the initial partial pressure.

From the model the total headspace gas reduction can be in-
vestigated as a function of storage time; this is plotted in Fig. 5 for the
system in Fig. 4(a) and (b). Three distinct phases in the headspace gas
reduction are observed. In the first equilibration phase, the carbon di-
oxide dissolves in the meat reducing the total amount of gas in the
headspace. This process is fast and takes place over the first 24 h. The
second phase is where the total amount of gas only varies very little; the
number of bacteria is relatively small and, as discussed above, the
oxygen consumed in the meat is negligible. In this phase the bacteria
grows exponentially, but their number is too small to affect the head-
space gas. This phase we denote the static phase, albeit it is only ap-
proximately static. In the final third phase the bacteria oxygen con-
sumption and therefore carbon dioxide production is at maximum. As

Fig. 3. Parameter ensemble histogram for Cox at T=0 °C. The best fit, mean
and mode (most probable) values are indicated.
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the ratio between carbon dioxide and oxygen in headspace increases
more gas is dissolved in the meat simply due to the higher solubility of
carbon dioxide leading to a reduction in headspace gas. This phase is
called the active phase to emphasize the high biological activity. Thus,

the reduced headspace gas phenomenon (package collapse) we attri-
bute to (i) initial dissolution of carbon dioxide and (ii) the relatively
high solubility of carbon dioxide compared to oxygen. (Jakobsen and
Bertelsen, 2004, 2006). It is worth noting that the three phases are
observed for both temperatures and different headspace mixtures. Also,
as the total amount of gas is known the package volume can be esti-
mated from the ideal gas law.

If the coupling between headspace and meat is ignored altogether
the model reduces to a two dimensional problem, where the dynamical
variables are N and nO2 or nCO2. In this case the oxygen drainage stops
when =N Nmax, in contrast to Eq. (13). Also, here the total amount of
headspace gas is conserved and the three headspace gas reduction
phases are not present. Fig. 5 gives an indication of the resulting error,
compared to Eqs. (12)–(15), from ignoring the coupling; here the total
headspace gas reduction is approximately 4.5%, but it can be up to
around 10%.

6. Conclusion

In this paper we have proposed a mathematical model for the
headspace dynamics of MAP meat. Specifically, the model includes the
dynamics of the surface bacterial growth, the headspace oxygen and

Figure 4. [Color online] Experimental data (filled symbols) and model results (lines). Black lines are model predictions using best fit parameter values and brown
lines are model predictions using model output ensemble average. Dotted lines represent the model output standard deviation. (a) and (b): =T 5 °C and 70% oxygen.
(c) and (d): =T 5 °C and 40% oxygen. (e)–(f): =T 0 °C and 20% oxygen.

Fig. 5. The total amount of gas in the headspace versus time for T=5 °C and
70% oxygen.
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carbon dioxide concentrations as well as the carbon dioxide dissolved in
the meat. The model was applied to MA packaged pork and parameters
were extracted from a series of long-term storage experiments.

From the model we conclude that the oxygen consumption in the
meat, i.e., oxidation processes and post mortem mitochondrial re-
spiration, do not affect the headspace dynamics. The carbon dioxide
dissolution in the meat, on the other hand, has a significant effect. The
headspace gas reduction undergoes three phases: (i) a fast equilibration
phase where the carbon dioxide dissolves in the meat, (ii) a static phase
where the dynamics is very slow, and (iii) a biologically active phase
wherein the bacteria consume large amount of oxygen and produce an
equal amount of carbon dioxide, which is then dissolved in the meat.
This latter phase is accompanied by a headspace reduction since the
carbon dioxide has a relatively large solubility compared to the oxygen.
This effect will be stronger for higher initial oxygen concentrations.

Mathematical modelling always involves simplifications and as-
sumptions. For example, in the present model the reaction between
carbon dioxide and the water in the meat is not included. This reaction
will change the pH-value inside the meat and on the meat surface which
in turn inhibits the bacteria growth and the mitrocondrial activity
(Chaix et al., 2015). It will be interesting to study the pH dynamics in
more detail, and include this into an extension of the model. Other
extensions of the model include package permeabilty, which can be
modelled by a simple additional term in Eqs. (5) and (6) (but which is
not relevant here), anaerobic bacterial dynamics, etc. Apart from ex-
tending the model, additional experimental data verifying that the
bacterial oxygen consumption rate is decreasing with respect to bac-
teria count for 70% oxygen levels is needed. Finally, determination of
the model parameters for different animals and cuts will make the
model applicable for a larger range of different types of meats.
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