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Connection between fragility, mean-squared displacement, and shear modulus
in two van der Waals bonded glass-forming liquids
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The temperature dependence of the high-frequency shear modulus measured in the kHz range is compared
with the mean-squared displacement measured in the nanosecond range for the two van der Waals bonded
glass-forming liquids cumene and 5-polyphenyl ether. This provides an experimental test for the assumption
connecting two versions of the shoving model for the non-Arrhenius temperature dependence of the relaxation
time in glass formers. The two versions of the model are also tested directly and both are shown to work well for
these liquids.
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I. INTRODUCTION

The glass transition happens when a supercooled liquid
falls out of equilibrium, i.e., when the structural relaxation
time is so long that the liquid cannot equilibrate within
a given experimental time. The temperature dependence
of the relaxation time in the liquid just above the glass
transition is in most cases super-Arrhenius. Liquids with a
strongly super-Arrhenius behavior are traditionally referred
to as “fragile” liquids following the convention of Angell
[1] as opposed to “strong” liquids with a close-to-Arrhenius
behavior. It is generally assumed that the relaxation dynamics
are governed by energy barriers to be overcome by thermal
activation, similar to an activation energy for a chemical
reaction [2]. To obtain super-Arrhenius behavior in this view,
the activation energy �E needs to be a decreasing function of
the temperature T and the relaxation time τ is given by

τ (T ) = τ0 exp

(
�E(T )

kBT

)
, (1)

where τ0 ∼ 10−14 s is a typical microscopic time and kB is
the Boltzmann constant. The following fundamental question
then arises: what causes the temperature dependence of the
activation energy that almost always increases upon cooling,
causing the super-Arrhenius behavior?

In the viscous liquid just above the glass transition there is
a separation of timescales between the fast thermal vibrations
taking place on the order of picoseconds and the relaxation
time which has a timescale of the order of hundreds of
seconds. The separation of timescales has the consequence that
the liquid will appear solid-like on timescales much shorter
than the relaxation time τ and it will show liquid behavior
on timescales much longer than τ . In the energy-landscape
picture [3], this corresponds to a separation between fast
vibrations around the energy minima on short timescales and
the inherent dynamics on longer timescales, due to jumps
between potential-energy minima.

There is no consensus on what governs the super-Arrhenius
temperature dependence of the relaxation time in liquids,
although numerous models and theories have been developed
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in trying to encompass the phenomenon [2,4–6]. The shoving
model, which is the focus of this paper, belongs to a class of
models referred to as elastic models [7,8].

The starting point of elastic models is that a flow event, a
molecular rearrangement, takes place on very short timescales
by barrier transition. The transition itself is a fast process, but
in the viscous liquid it is rare, which leads to slow relaxation.
Since the transition is fast, it is governed by properties of the
liquid at short timescales where it appears as a solid. This gives
a link between the vibrational, short-time elastic properties
of the liquid, and the relaxation on long timescales. As the
liquid is cooled, the liquid hardens, the mechanical moduli
increase, and the vibrational amplitudes decrease. This leads
to an increase in the barrier height which in turn leads to the
super-Arrhenius behavior of the liquid’s relaxation time. The
details of the argument vary for the different versions of the
elastic models.

There is a series of more phenomenological results, which
are not directly related to elastic models but which support
the notion that there is a connection between fast and slow
dynamics. One of the first was the observation in 1992 by
Buchenau and Zorn of a relation between fast and slow
dynamics in selenium [9]. They found a relation between
the temperature dependence of the slow structural relaxation,
the viscosity, and the fast mean-squared displacement (MSD)
studied with neutron time of flight. A connection between fast
vibrational and slow structural dynamics was also suggested
in several other works (see, e.g., the references of Ref. [2]).
Some of these suggest a connection between the vibrational
and elastic properties of the glass and the fragility of the
corresponding liquid [10–12], others suggest a connection
between the temperature dependence of the vibrations in
the liquid and the temperature dependence of the structural
relaxation time, the alpha relaxation [13–15], closer to the
original result from Buchenau [9] and the predictions of the
shoving model discussed in Sec. II.

The shoving model and related elastic models have re-
cently been discussed in the context of several theoretical
developments. In 2013 Yan, Düring, and Wyart discussed
from a general point of view the connection between glass
elasticity and fragility in a model that connects the two
properties such that elasticity is a good predictor of fragility
[16]. Mirigian and Schweizer proposed a unified model for
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the viscosity of simple liquids going from the less-viscous
regime of “ordinary” liquids to the highly viscous supercooled
regime, in which the deviation from Arrhenius temperature
dependence in the high-viscosity regime is dominated by the
elastic “shoving” work done on the surroundings to locally
lower the density [17]. In 2015 Schirmacher, Ruocco, and
Mazzone proposed a unified theory for the viscosity, the
low-temperature alpha relaxation, and the high-frequency
vibrational anomalies. The basic idea was to regard the
system as a spatial mixture of different Maxwell viscoelastic
elements characterized by a distribution of activation energies,
each proportional to the local high-frequency shear modulus
[18]. Also in 2015 Betancourt, Hanakata, Starr, and Douglas
connected the short-time vibrational MSD to free volume and
cooperativity, arguing that several apparently different models
for the viscous slowing down are, in fact, different aspects
of the same mechanism [19]. The shoving model and related
elastic models have also been used recently for interpreting
experimental findings; e.g., in Refs. [20–29].

The shoving model exists in two different formulations,
one which connects the relaxation time to the high-frequency
shear modulus G∞ and one which relates the relaxation
time to short-time MSD. The two versions of the model are
equivalent under a few simple approximations [8]. One of
these assumptions is somewhat implicit; namely, that the two
properties are measured at the same timescale—or that they are
measured in a range where there is no timescale dependence of
the properties. However, as the alpha relaxation time becomes
longer, i.e., beyond the millisecond range, many liquids exhibit
one or more beta relaxation processes at shorter timescales
than the alpha relaxation time. The beta relaxation can have
a quite large amplitude in the shear modulus [30] and the
elastic properties and the temperature dependencies of these
will therefore be different when probed at different timescales.
Many of the tests of the G∞ version of the shoving model
are made based on measurements made on the kHz range,
whereas the MSD version has been tested primarily based on
neutron-scattering data performed on the pico- or nanosecond
timescale.

The issue of which timescale to use in elastic models has
been discussed previously [31,32]. Since the thermal motion
that gives rise to the transition is dominated by phonons, it is
argued that the relevant timescale should be the picosecond
timescale. However, for some liquids elastic models appear
to work better when tested at longer timescales where the
properties are more temperature dependent than at the phonon
times [31,32]. In other words, the temperature dependence
of the vibration on the phonon timescale is not always
large enough to account for the super-Arrhenius temperature
dependence of the relaxation time. Based on these types of
observations, Buchenau [32] argues that the elastic models
need to be combined with an Adam–Gibbs model, and that
both the hardening of the liquid and the decrease of entropy are
to be included to properly explain the temperature dependence
of the relaxation time. However, there is also a paper where the
G∞ version of the model is supported by G∞ data determined
from a range of techniques using different timescales in order
to correctly establish the plateau value [33]. In a recent review
on experimental tests [34] of both versions of the shoving
model, it was found that the shoving model works in many

cases, but in other cases not, yet there is no apparent system in
when it works and when it does not work.

In this paper we experimentally test the equivalence of the
two different versions of the shoving model by comparing the
temperature dependence of the high-frequency shear modulus
to that of the short-time MSD. Moreover, we directly compare
the performance of the two versions of the shoving model.
To the best of our knowledge this is the first example of an
experimental investigation of the assumptions made in Ref. [8]
in order to arrive at the equivalence between the two versions
of the model. As described above the assumptions imply a
connection between dynamics on widely different timescales
and it is unlikely that it will work for liquids with one or
more beta relaxations. Our aim is to establish whether the
assumptions can lead to a coherent picture that is consistent
with experimental data in the simple case where there are
no additional relaxations. Therefore, we study two liquids
showing as simple behavior as possible; cumene (isopropyl
benzene) and 5PPE (5-polyphenyl ether). Both liquids have
been found to obey density scaling, which means that the
relaxation time is a unique function of ργ /T , where ρ is
density, T is temperature, and γ is a material constant [35–38].
Moreover, their alpha relaxation obeys time-temperature
superposition (TTS), which means that the spectral shape is
independent of temperature [39]. Shear mechanical and dielec-
tric spectroscopy measured on cumene (Fig. 1 of this paper and
Ref. [37]) show a low amplitude beta relaxation (in the range
of percent of the alpha relaxation) whereas 5PPE only exhibits
a weak wing [39]. The absence of a prominent beta relaxation
should ensure that the elastic shear modulus does not change
appreciably in the timescale from milliseconds to seconds.

The paper is structured as follows: Section II introduces the
two versions of the shoving model tested in this paper and
the underlying assumptions. In Sec. III we present new data
on cumene. In Sec. IV, we test the models and also present
our interpretation of the data, before discussing our findings
in Sec. V.

II. THE SHOVING MODEL—TWO VERSIONS

In the original G∞ version of the shoving model [2,7,34,40],
a local expansion is assumed to take place in order for a flow
event to happen. The activation energy is identified as the
work done shoving aside the surrounding liquid during this
local expansion, and the activation energy is associated with
the elastic energy located in the surroundings of the flow event.
According to the shoving model, the surrounding liquid will
behave like a solid during the expansion because the flow
event itself is fast. Assuming the local region that expands is
spherical, the relevant elastic constant of the surroundings is
the elastic shear modulus G∞ [7]. Moreover, it can be shown
that the main contribution to elastic energy is shear elastic
energy and that the bulk elastic energy only plays a minor
role far from an arbitrary point defect in an isotropic solid, no
matter how large the bulk modulus is compared with the shear
modulus [41].

The temperature dependence of the relaxation time accord-
ing to the shoving model is given by

τ (T ) = τ0 exp

(
VcG∞(T )

kBT

)
, (2)
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FIG. 1. (top) The MSD of cumene as a function of temperature
from IN16B (•) and old data from IN10 (�). The shaded area marks
the temperature interval where the shear modulus was measured.
(inset) Zoom; the lines are guides to the eye to show the change in
dynamics around Tg and Td ≈ 150 K. (bottom) Loss peak of the shear
modulus of cumene measured in the temperature interval 130–140 K.
The inset shows the extrapolation of the loss-peak moduli according
to Eq. (8) into the higher-temperature liquid range that was used for
neutron scattering.

where Vc is a characteristic molecular volume which is
assumed to be constant.

In the MSD version of the shoving model [8], the activation
energy is related to the MSD associated with molecular
vibrations taking place on timescales where the glass-forming
liquid acts like a solid. The idea is that larger vibrations are
connected to a softer potential, which leads to a smaller energy
barrier. The MSD version of the shoving model is given by

τ (T ) = τ0 exp

(
a2

〈u2〉(T )

)
, (3)

where 〈u2〉(T ) is the vibrational MSD, and a is a characteristic
molecular length assumed to be constant.

The approximate equivalence between the two versions
of the shoving model is derived by modeling the vibrations
harmonically and averaging over the two types of phonons,
yielding [8]

〈u2〉(T ) ∝ T

(
2

G∞(T )
+ 1

M∞(T )

)
, (4)

where G∞ and M∞ are the transverse and longitudinal moduli,
respectively. It can be shown that the temperature dependence
of the shear modulus dominates the total temperature depen-
dence of the expression [8], leading to

〈u2〉(T ) ∝ T

G∞(T )
. (5)

Combining Eq. (5) with Eq. (3) gives the equivalence of the
two versions of the shoving model and one ends up with three
proportional terms:

�E(T )

kBT
∝ VcG∞(T )

kBT
∝ a2

〈u2〉(T )
. (6)

III. EXPERIMENTS AND DATA

We present new MSD and inelastic fixed window scans
[42] measured with neutron backscattering as well as new
data on the shear modulus measured by broadband shear-
mechanical spectroscopy on the liquid cumene (isopropyl
benzene). Cumene has been studied for many years with other
techniques; for example in Refs. [31,43–46]. Cumene is a
small molecule with Tg = 127 K, fragility m ≈ 70 and only a
small beta relaxation.

In Sec. IV C we also test the elastic models for another van
der Waals bonding liquid, 5PPE (5-polyphenyl ether) which
is a large molecule with Tg = 243 K but with a behavior and
fragility (m ≈ 80) similar to that of cumene [36,47]. For 5PPE
we present new MSD data and compare with earlier published
shear mechanical data.

Cumene was purchased from Sigma Aldrich, and 5PPE was
purchased from Santolubes. Both were used as acquired.

A. Mean-squared displacement

The MSD is measured by elastic incoherent neutron
scattering. Elastic temperature scans at the backscattering
instrument IN16B were performed for this study at the Institut
Laue–Langevin (ILL).

Neutron backscattering can be used to study fast dynamics
of atoms by measuring the incoherent intermediate scatter-
ing function I (Q,t). The incoherent intermediate scattering
function is the space Fourier transform of the density self-
correlation function, which gives the probability that an atom
at some time t is at a given position at a new time t + t ′.

The elastic scans were performed with an energy resolution
of �E ≈ 0.8 μeV, accessing a timescale of the dynamics
of around 5 ns. The energy resolution of the instrument
corresponds to studying the dynamics at a specific time t . In
elastic scans, I (Q,t) is essentially time independent and only
dependent on the scattering vector Q and the temperature, T .
We therefore introduce the incoherent intermediate scattering
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function notation I (Q,T ) used in incoherent elastic neutron
scattering.

The MSD is obtained from the data by using the Gaussian
approximation [48]

I (Q,T ) = exp

(−Q2〈u2〉(T )

3

)
, (7)

which is valid if the distributions of displacements is Gaussian,
for example in the case for harmonic vibrations.

The MSD is calculated from the logarithm of the elastic
intensity for each temperature as a function of Q2 according
to Eq. (7). The data for each temperature is normalized to
the data at the lowest temperature, T = 5 K, thus removing
any zero-point motion. The MSD of cumene as a function of
temperature is shown in Fig. 1. Around the glass transition
(τα = 100 s) for cumene at Tg = 127 K there is a change
in slope of the MSD as a function of temperature. We see a
collapse of previous data measured on IN10 at ILL [31] with
the new data with better statistics from IN16B.

B. Shear modulus

The shear modulus was measured as a function of frequency
by using a piezo-ceramic transducer [49] in the frequency
interval 10−2–104 Hz. The loss peak of the shear modulus
for cumene is shown in Fig. 1 in the temperature interval
130–140 K probed in steps of 1 K. This temperature range
corresponds to the shaded area in the MSD plot (Fig. 1). Note
that, within a temperature range of 10 K, the alpha relaxation
time changes roughly by five orders of magnitude.

The inverse of the frequency of the shear loss peak maxi-
mum νmax gives a measure of the alpha relaxation time, τα =
1/(2πνmax). For studying the shoving model, we also need the
elastic shear modulus [Eqs. (6) and (2)]. To establish whether
a plateau in the real part of the shear modulus is actually
reached is not easy [50], especially for higher temperatures
within the frequency range of this setup. However, if a liquid
obeys TTS, i.e., the spectral shape does not change with time
and temperature, given the Kramers–Kronig relations between
the real and imaginary part of the shear modulus, the plateau
of the elastic shear modulus is proportional to the maximum
loss, G∞(T ) ∝ G′′

max(T ), i.e., they have the same temperature
dependence [34].

Cumene obeys TTS with only a small beta relaxation. Since
the maximum of the loss peak is more readily accessible than
the elastic (plateau) shear modulus, we will use the maximum
of the loss in studying the elastic models throughout this paper.

The inset in Fig. 1 shows the extrapolation in temperature
of the maximum shear loss for the entire liquid temperature
range used in neutron scattering. The relation from Barlow
et al. [51,52] is used to extrapolate to higher temperatures:

1

G∞
= 1

G0
+ C(T − T0), (8)

where C is a constant. We will substitute G′′
max for G∞. The

extrapolation is used for testing Eq. (5) in the temperature
range of the MSD in the liquid, i.e., above Tg .

IV. TESTING THE MODELS

A. Mean-squared displacement and G∞: Cumene

To test Eq. (5), the MSD of cumene is plotted against
the shear modulus scaled with temperature in Fig. 2. The
black data points are in the interval where the shear data was
actually measured, the rest is from extrapolation in temperature
according to Eq. (8).

The straight line is a one-parameter fit, in which only the
slope of the line is fit to the part of the data that clearly falls
on a straight line. The line shows that the data follow the
proportionality predicted by Eq. (5). This equation is valid
under the assumption that the elastic constants measured in the
kHz range agree with the elastic constants governing the MSD
measured at roughly five orders of magnitude shorter times.
The proportionality applies up until 1.2Tg . Our interpretation
is that the alpha relaxation here enters the window of the
neutron-scattering instrument, causing a larger temperature
dependence of the MSD than of the shear modulus, and that
the MSD grows faster than predicted from the decrease of the
shear modulus.

We see when the signal changes from being just elastic
to also having an inelastic contribution by use of the fixed
window scan (FWS) technique [42] available on IN16B at
ILL. From this technique it is possible in, for example, a
temperature scan to not only gain information about the change
in elastic intensity, but also from the inelastic intensity by
continuously changing the instrument settings. The change in
elastic intensity (EFWS) and the inelastic intensity (IFWS) for
three different settings, �E = 2, 5, and 8 μeV are shown in
Fig. 3 summed over Q and normalized to monitor.

The increase of the IFWS is a sign of the alpha relaxation
entering the 2 μeV window, i.e., that it takes place on the
nanosecond timescale. This happens roughly at the temper-
ature 150 K where the relation from Eq. (5) breaks down
(Fig. 2). This is also visible in the MSD (Fig. 1, inset of the top
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FIG. 2. Testing Eq. (5) for cumene in the liquid. The black data
points mark temperatures at which the shear modulus was measured.
Equation (5) holds until the temperature 1.2Tg where the alpha
relaxation enters the neutron-scattering window.
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FIG. 3. Fixed window scan on IN16B on cumene summed over
Q. From the inelastic signal (IFWS: broken lines) we see the alpha
relaxation entering the instrument window around 150 K signal
(EFWS: full line). Please note the different scales between the EFWS
and IFWS.

panel) where another change in slope in addition to the one at
the glass transition can be seen at roughly 150 K. This change
in slope signals a dynamic transition, Td , where the relaxation
time and the resolution time of an instrument intersect. This
onset of dynamics was also reported in Ref. [53].

B. Shoving model: Cumene

Assuming that the characteristic volume Vc is constant in
temperature, the shoving model predicts that the logarithm
of the relaxation time is a linear function of G∞(T )/T . The
prefactor τ0 is given by a typical microscopic timescale. We set
it to τ0 = 10−14 s and define the glass transition temperature
from the shear mechanical alpha relaxation time by τg = 100 s.
By doing this the linearity becomes [34] (with all times in
seconds)

log10 τ (T ) = (log10 τg − log10 τ0)
G∞(T )Tg

G∞(Tg)T
+ log10 τ0

= 16
G∞(T )Tg

G∞(Tg)T
− 14, (9)

which under the assumption G∞(T ) ∝ G′′
max(T ) introduced in

the previous section yields

log10 τ (T ) = 16
G′′

max(T )Tg

G′′
max(Tg)T

− 14. (10)

This gives rise to a “shoving plot”; a way of testing the
shoving model without free parameters by comparison of
normalized data to the shoving model prediction.

A similar equation can be written up for the MSD version
of the shoving model:

log10 τ (T ) = 16
〈u2〉g

〈u2〉(T )
− 14. (11)

Tg/T ;Gmax(T )Tg/Gmax(Tg)T ; u2
g/ u2 (T )
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FIG. 4. The shoving plot with the prediction (black line), relax-

ation time against G′′
max(T )Tg

G′′
max(Tg )T (	), and 〈u2〉g/〈u2〉(T ) (×). Relaxation

time for cumene is plotted against temperature for the standard Angell
plot (◦).

Since the shoving model relates the relaxation time to
the short-time liquid properties, the model is only tested in
the temperature range of the shear measurements, i.e., from
130–140 K where we have the alpha relaxation in the frequency
window of the shear modulus.

In Fig. 4, the shoving plot with the black line as the
prediction [Eq. (10)] is plotted along with the scaled shear
modulus, the parameter G′′

max(T )Tg

G′′
max(Tg )T for cumene and along with

the MSD scaled to the MSD at the glass transition temperature
[Eq. (11)]. The MSD data points were interpolated to find
the MSD at the temperatures where the shear modulus was
measured. The prediction that the short-time dynamics scales
linearly with the logarithm of the relaxation time all the way
from the glass transition (τ = 100 s) to microscopic timescales
(τ0 = 10−14 s) agrees with the data. Thus the figure shows
that both the MSD and the shear modulus version of the
shoving model can account for the non-Arrhenius behavior
in the temperature range studied.

C. Mean-squared displacement, G∞, and shoving model: 5PPE

We also tested the elastic models for the glass-forming
liquid 5PPE (5-polyphenyl ether). 5PPE has fragility of
m ≈ 80, similar to that of cumene, and it has a similar behavior
with only a weak wing [54]. The glass transition temperature
of 5PPE from shear modulus is 243 K. 5PPE has been shown
to obey TTS [55] and is found to have very simple behavior in
the sense defined by isomorph theory [36,47].

The MSD shown in Fig. 5 was measured at IN16 at ILL. The
shear data are from Hecksher et al. (2013) [54] and the shear
loss peaks in the temperature interval T = 245–265 K are also
shown in Fig. 5. The temperature range of the shear data is
marked in the MSD plot as the shaded area. The inset shows
the extrapolation into the higher temperature region according
to Eq. (8).
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FIG. 5. (top) The MSD of 5PPE as function of temperature. The
shaded area illustrates the temperature interval of the measured shear
modulus. (inset) Zoom; the lines are guides to the eye to show the
change in dynamics around Tg and Td ≈ 280 K. (bottom) Loss peak
of the shear modulus of 5PPE measured in the temperature interval
245–265 K. Inset shows the extrapolation of the loss peak moduli
into the whole liquid temperature range that was used for neutron
scattering.

The proportionality between MSD and T/G∞(T ), as well
as the shoving plot, are shown in Fig. 6. The picture is the same
as for cumene (Figs. 2 and 4): the elastic models work well.
Regarding the proportionality between MSD and T/G∞(T ),
we see the alpha relaxation entering the neutron-scattering
window at 1.15Tg , a slightly lower temperature than for
cumene. This could be due to the higher fragility of 5PPE.
The data follow the shoving prediction well. Clearly the scaled
shear modulus and the MSD follow the general trend predicted
by the shoving model, although not as nicely as for cumene.
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FIG. 6. (top) Testing Eq. (5) for 5PPE in the liquid. The black
data points mark temperatures at which the shear modulus was
measured. Equation (5) holds until 1.15Tg where the alpha relaxation
enters the neutron-scattering window. (bottom) The shoving plot with

the prediction (black line), relaxation time against G′′
max(T )Tg

G′′
max(Tg )T (	),

and 〈u2〉g/〈u2〉(T ) (×). Relaxation time for 5PPE is plotted against
temperature for the standard Angell plot (◦).

V. DISCUSSION AND CONCLUSION

We have shown that the shoving model is confirmed in the
case of the two liquids studied, and that there is good agreement
between the two versions of the shoving model: one connecting
the slow structural relaxation to the short-time elastic modulus
and one connecting the slow structural relaxation to the
short-time MSD. This correspondence holds even though the
MSD and the shear modulus are measured at two very different
timescales; the nanosecond and the millisecond, respectively.

For cumene, the relation between G′′
max and the MSD

shows proportionality up to the temperature where the alpha
relaxation as seen by IFWS enters the neutron-scattering
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window, causing a stronger temperature dependence of the
MSD than of the elastic modulus. In the case of 5PPE we do
not have the IFWS data, but we see a similar development in the
MSD. This supports the scenario proposed by Capaccioli et al.
[53] referring to two transitions in the MSD of solvated
proteins: the glass transition and the dynamic transition where
the relaxation time and the resolution time of an instrument
intersect.

In our view, the change in slope of the MSD at the
glass transition temperature is not due to a change in the
mechanism of the nanosecond dynamics. The dynamics is
still vibrational. Rather, the modulus becomes much more
temperature dependent because of going from the glassy to
the liquid state. With the assumptions we have used, the
temperature dependence just above Tg can be predicted by the
change in the high-frequency modulus. The second change is
in the liquid at Td where the alpha relaxation enters the
instrument window causing a further increase in the MSD.

Because of the energy-resolution dependence of the MSD,
the study may be performed in addition on instruments with
coarser energy resolution which also allows us to discriminate
different vibrational and relaxational contributions to the MSD
[9,31,56]. Here we present with the inelastic fixed window
technique an alternative possibility for attempting a separation
of the different motional contributions to the MSD or at least
to determine the temperature range where relaxation becomes
important.

For other systems with more complex behavior such as
large beta relaxations, it is likely that the picture is more

complicated. Here we would expect a discrepancy between the
temperature dependence of the MSD at the nanosecond and
the modulus measured in the kHz range. Based on the shoving
model, one expects the properties at short timescales to be
the best predictor of the temperature dependence of the alpha
relaxation time. However, literature findings do not always
support this prediction [31,32]. Another possibility is that the
MSD at the nanosecond timescale has a larger relaxational
component in liquids with a more complex relaxation map.
If this fast relaxation has a weak temperature dependence, it
could lead to a relatively weaker temperature dependence of
the MSD as compared with the activation energy and thus a
deviation from Eq. (6). Finally, it is also possible, as suggested
by Buchenau [32], that the elastic models do not explain the
full temperature dependence of the activation energy in the
general case. In the future it is therefore important to test
the different versions of the shoving model with liquids of
different behavior, including variations in fragility.
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