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Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded

polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales

due to a lack of appropriate probes. Here we present a universal X-ray based method for providing data on

the structure of rubbers in the 2–50 Å range. First results relate to the elongation of a silicone rubber. We

identify several non-entropic contributions to the free energy and describe the associated structural

changes. By far the largest contribution comes from structural changes within the individual monomers,

but among the contributions is also an elastic strain, acting between chains, which is 3–4 orders of

magnitude smaller than the macroscopic strain, and of the opposite sign, i.e. extension of polymer

chains in the direction perpendicular to the stretch. This may be due to trapped entanglements relaxing

to positions close to the covalent crosslinks.

Introduction

Polymer chains (with diene polymers as exemption) can take
many different shapes as any two neighboring segments in the
polymer chain can rotate with respect to each other. Poly-
dimethylsiloxane (PDMS) constitutes one of the most exible
polymers due to the almost free rotation of the Si–O bonds in
the polymer backbone. This general freedom of polymers
implies that by adjusting the chemical structure and by mixing
constituents it is possible to make materials with a large variety
of structural organizations and associated physical and
mechanical properties, ranging from liquid over gel-like
towards hard and brittle materials. Rubbers arise from cross-
linked polymer chains and are characterized by the ability to be
stretched elastically to a much larger extent than crystalline
materials such as metal and ceramics.

The theory of rubber elasticity is a cornerstone in our
understanding of the structure–property relationship of

polymers. The classical models1,2 are based on the hypothesis
that chains on average become longer in the tensile direction by
chain-segments rotating with respect to each other. All inter-
actions between chains are neglected and the response is purely
entropic. A number of revised models of rubber elasticity3–12

have been proposed dealing with the constraint of the chains on
each other (entanglements), but they are still entropy based,
and the generalizations tend to be phenomenological in nature.

However, experimental data have conrmed that rubber
elasticity is not solely entropic of nature. As an example,
microcrystalline domains in the polymer introduce enthalpic
contributions to the free energy of the rubber. Crystalline
domains appear very commonly in rubbers and provide the
entire elasticity for thermoplastic elastomers, which behave
mechanically as rubbers when stretched in the temperature
range between their glass transition temperature and melting
temperature. Enthalpic contributions are also encountered
when the polymer chains are stretched beyond the so-called
maximum chain extensibility region where the rubber
becomes strongly strain-hardened. In this regime the polymers
no longer elongate by chain-segment rotation, but encounter
chain-stretching, i.e. bond angles are changed. Usually the
enthalpic contributions are determined from calorimetric
experiments, but this technique does not reveal any details on
the origin of the enthalpy change.

Crosslinked PDMS, also known as silicone rubbers or elas-
tomers, are commonly used as model rubbers since the chem-
ical structure of PDMS can be carefully adjusted to provide
variable and controlled network structures for model verica-
tion, and the silylation chemistry crosslinking reaction
proceeds more or less ideally without any signicant side
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reactions. Furthermore, PDMS possesses a very low glass tran-
sition temperature and no melting temperature, which indi-
cates that the number of microcrystalline domains is vanishing.
The polymer chains are in addition extremely exible and thus
very high stretches are allowed before the polymer chains enter
the maximum stretchability region, for instance strains up
to 1400% for a very lightly crosslinked silicone elastomer.13

Therefore, unlled silicone rubbers should in principle possess
entropic contributions to the free energy only.

A main difficulty for validating structural models of polymer
networks is the lack of experimental techniques to visualize the
individual polymer chains without altering the chemical struc-
tures such as via labeling. This has implied that the models are
typically tested on a macroscopic scale, e.g. by comparing pre-
dicted stress–strain curves to results of mechanical testing.3,14

In terms of structural techniques, small angle X-ray and neutron
scattering (SAXS/SANS) have provided information on the
average size and asymmetry of the end-to-end distribution of
the chains.15,16 Likewise spectroscopy has been used to probe
the atomic congurations17 and deuterium magnetic resonance
to probe segment orientation in rubbers.18 However, none of
these probes provide information on the intermediate scale of
the interaction between neighboring chains.

To enable studies on the entire 2–50 Å length scale we intro-
duce the use of diffraction by hard X-rays, emerging from
a synchrotron source. X-ray diffraction from laboratory sources
has been used in the past to determine the average atompositions
in the un-deformed state19 and coarse structural changes taking
place during deformation.20 In comparison the high energy
synchrotron data we present below are associated with much
smaller correction terms leading to more accurate data21 and
hence allowing for a more ambitious data analysis approach.

Experimental
Sample preparation

Three synthesized networks were prepared from three different di-
functional vinyl-terminated PDMS polymers (V31, V35, and V41)
and two low-molecular weight hydride-containing crosslinkers
with different functionalities, namely phenyltris(dimethylsiloxy)
silane (functionality f of 3) and tetrakis(dimethylsiloxy)silane (f ¼
4) (trade names SIP6826.0 and SIT7278.0, respectively) via a simple
addition reaction. All polymers were purchased from Gelest
Inc. The telechelic vinyl-functional PDMS and the 3-functional
crosslinker are both illustrated in ESI Fig. S1.† The addition

reaction between the hydride and the vinyl groups was catalyzed by
a platinum cyclovinylmethyl-siloxane complex (511) provided by
Hansechemie AG used in a concentration of approximately 10
ppm. No solvents were utilized. Sample details are given in Table 1.

As a fourth sample we tested Elastosil RT625 (abbreviated as
Elastosil in the following) – a commercial composite PDMS
elastomer, which includes amongst other a reinforcing silica
ller. Elastosil is supplied as a two-component silicone rubber
by Wacker Chemie AG. It is a rather strong silicone elastomer
due to the presence of ller particles, whichmakes the apparent
crosslink density higher due to a reduced mobility of the sili-
cone chains. Based on density information, the commercial
composite elastomer comprises signicant amounts of silica.

Great care was taken to eliminate mixing problems, such as
introduction of air bubbles and crosslinking inhomogeneity.
Two premixes were prepared, namely PDMS/catalyst and
PDMS/crosslinker. For Elastosil the premixes were supplied. In
this way both low and high viscosity components could be
mixed sufficiently long without any reaction taking place. More
details on the mixing procedure can be found in Larsen et al.14

Next, the two premixes were mixed for 10 minutes at ambient
temperature before the partly cured reaction mixture was poured
into the mold, kept at 10 �C. Themold was then transferred to an
oven at 50 �C where it was kept for 2 hours to ensure complete
reaction before slowly being cooled to room temperature.

All samples were molded as cylindrical dog-bone shaped
specimens. The two end plates contained holes in order to let
excess material and air out and to further increase the area on
the plate to which the elastomer should adhere. The samples
had a diameter of 4.0 mm at the midpoint and a length of
16 mm (measured from end plate to end plate). More details on
the utilized testing settings can be found in Bejenariu et al.22

Mechanical properties

The mechanical properties of the four types of samples were
probed on a vertical lament stretch rheometer, where the
elastic moduli were determined from ideal elongational ow
data in the linear regime. The experiments were performed at
constant Hencky strain rates of n ¼ 0.02 s�1 and n ¼ 0.002 s�1,
respectively. More details on the sample preparation can be
found in Jensen et al.23 Reversing large amplitude oscillatory
elongational measurements24 were performed on the strongest
(Elastosil) and soest (V31) networks at a strain rate n¼ 0.02 s�1

in order to clarify the dynamic behaviour at a slow frequency
comparable to the effective strain rate applied in the experiments

Table 1 Properties of the applied polymers and the resulting elastomers. The molecular weight Mn was determined from 1H NMR measure-
ments. The polydispersity index, PDI¼Mw/Mn, was determined by size exclusion chromatography with polystyrene (PS) standards. The methods
are described in Larsen et al.14

Polymer Mn (g mol�1) PDI
Average number of
monomers in chain

Average number of
entanglements per chain

Cross-linker
functionality

Young's
modulus (MPa)

V31 29 000 1.3 391 2.4 3 0.2
V35 49 500 1.5 668 4.1 4 0.4
V41 62 400 1.6 841 5.2 4 0.4
Elastosil — — — >1 — 1.0
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at the synchrotron. Elastosil has an elastic modulus of �1 MPa
and the soest elastomer (V31) has an approximately ve times
lower elastic modulus. The corresponding stress–strain curves
are shown in ESI Fig. S2.† The Elastosil sample shows a slight
degree of strain soening and it can also be observed that there is
a relatively high hysteresis. Both observations are due to ller
materials rearranging with slow dynamics (Mullins effect) in the
commercial rubber. The soest (V31) rubber shows a very small
degree of hysteresis and behaves approximately linearly in the
investigated strain region. The other two so rubbers show no
hysteresis due to the more ideal crosslinking resulting from the
four-functional crosslinker. The shortest polymer was cross-
linked with the 3-functional crosslinker as it otherwise became
too brittle to be stretchable.

Synchrotron setup

The in situ experiment took place at beamline ID15B at the
European Synchrotron Radiation Facility. The various rubber
specimens were repeatedly stretched and un-stretched in steps
from the un-deformed state (l¼ 1) to elongations of up to 200%
(l ¼ 3). Samples were loaded using a Linkam TST350 thermo-
mechanical tensile testing cell. The load stage was equipped
with a 20 N load cell and self-centring grips which assured that
the applied load was uniaxial. The load resolution of the cell was
1 mN and loading rates were <1 mm s�1.

The X-ray beam was monochromatized and focused in the
horizontal plane by means of a bent Si-511 crystal.25 The samples
were illuminated with a 0.3 � 0.3 mm2 pencil beam in trans-
mission geometry. The energy of the incident radiation was 89.07
keV. The acquisition time of the diffraction patterns was 50 s. The
area detector usedwas aat panel Pixium4700 detector by Thales,26

with 1920 � 2640 pixels and an active area of 295.68 � 406.56
mm2. With the detector positioned 312 mm from the sample, the
transmission set-up allowed the acquisition of data within a
Q-range of 0.5 to 18.5 Å�1, see Fig. 1 for a schematic of the setup.

Aer every measurement, an exposure was made with a high-
resolution video camera, positioned next to the sample at an
angle of 90� with respect to the beam. This was used to calibrate
for dris of the sample position in the direction of the beam.

The incident radiation was monitored with a Si-pin diode, and
all diffraction patterns were normalized by this reading. The
X-ray background was measured without the sample and sub-
tracted from the diffraction patterns. Diffraction images were
corrected using a known at eld gain correction and dead
pixels were excluded from the analysis.

Theory
Scattering formalism

The following summary of relevant equations builds on
Warren.27 Bragg's law implies the following correlation between
the momentum transfer, Q, the X-ray wavelength lx and the
scattering angle 2q:

Q ¼ 4p

lx
sinðqÞ (1)

Assuming the face normal of the 2D detector to be parallel to
the direction of the incoming beamwe have s/L¼ tan(2q), where
s is the radial detector coordinate and L is the sample-detector
distance, cf. Fig. 1. It follows that the intensity distribution on
the detector can be characterized in terms of coordinates Q and
h, with the azimuthal detector coordinate h dened in Fig. 1.

The cylindrical symmetry imposed by the tensile deforma-
tion implies that we can express the h-variation of the intensity
distribution by a Legendre expansion.28,29 In the following we
assume that expanding in two terms is sufficient. The real space
pair distribution g(r) is then composed of an isotropic term g0(r)
and an anisotropic term g2(r). These are related to corre-
sponding Q-space terms, the structure functions s0(Q) and s2(Q)
respectively, by means of two Fourier–Bessel transformations:

g0ðrÞ � 1 ¼ 1

2p2r

ð
s0ðQÞj0ðQrÞQ2dQ (2)

g2ðrÞ ¼ �1

2p2r

ð
s2ðQÞj2ðQrÞQ2dQ (3)

here j0 and j2 are the zero'th and second order Bessel functions,
respectively, and r is the density per unit of composition. It is
oen useful to multiply the structure function with a modica-
tion function such as the Lorch function L(Q) ¼ j0(p/2Q/Qmax),
thus trading real space resolution for statistical accuracy.

Details of data analysis

Aer integration into 10� segments in h all data Iraw(Q,h) are
corrected for (i) a geometric factor Cg(Q) relating to a varying
sample to detector pixel distance, (ii) a polarization dependent
part of the Thomson cross-section Cp(Q,h) for horizontally
polarized incident radiation and (iii) a varying instrumental
background Ibackg(Q,h):

Icorr(Q,h) ¼ Cg(Q)Cp(Q,h)[Iraw(Q,h) � Ibackg(Q,h)] (4)

CgðQÞ ¼ 1

cosð2qÞ2 (5)

Fig. 1 Schematic diagram showing the high-energy X-ray diffraction
setup used during the experiment.
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CpðQ; hÞ ¼ 1

sinðhÞ2 þ cosð2qÞ2cosðhÞ2 (6)

The corrected intensity for the un-deformed samples is
averaged azimuthally, i.e. over h, and the averaged intensity is
multiplied with the intensity ratio between the deformed and
un-deformed samples. This is done to remove the effect of
remaining spatial inhomogeneities in the detector response.

The intensity ratios are then analysed as Legendre compo-
nents. Using again only two terms we have:

IðQ; h; lÞ
IðQ; h; l ¼ 1Þ ¼ aðQ; lÞ þ bðQ; lÞ �

�
3

2
cos2ðhÞ � 1

2

�
(7)

Because the diameter of the sample decreases with the
elongation l, the illuminated volume becomes smaller.
Furthermore the Legendre coefficients, a(Q,l) and b(Q,l), are
affected by small (<1%) absorption effects caused by the varying
amount of material in the path of the scattered X-rays. Both
effects are conveniently accounted for by a low pass Fourier-
lter technique. We thus determine a common normalization
factor CNV(Q,l). The Q-dependence is small and only contains
components varying so slowly with Q that they cannot be
confounded with interatomic structures. The isotropic intensity
of the un-deformed sample is normalized to an absolute cross
section by comparison with the sum of the atomic self plus
Compton scattering by a second normalization factor CN(Q),
which increases slightly with Q. Thus we have:

s0ðQÞ ¼
IcorrðQ; l ¼ 1ÞCNVðQ; lÞCNðQÞ �P

uc

f 2 �P
uc

SðQÞsKN

�P
uc

f

�2

(8)

Ds0ðQ; lÞ ¼ aðQ; lÞIcorrðQ; l ¼ 1ÞCNVðQ; lÞCNðQÞ�P
uc

f

�2
(9)

s2ðQ; lÞ ¼ bðQ; lÞIcorrðQ; l ¼ 1ÞCNVðQ; lÞCNðQÞ�P
uc

f

�2
(10)

here f are the tabulated form-factors of the atoms, S(Q) are the
tabulated inelastic scattering factors and sKN is the Klein–
Nishina cross section for Compton scattering. The isotropic
structure factor s0 represents the average structure – the
distances between atoms and chains – while the anisotropic s2
comprises information on the preferred direction (with respect
to the tensile direction) of chain-segments of various lengths.
Ds0(Q,l) and Ds2(Q,l) are the changes of the isotropic and
anisotropic, respectively, scattering function with extension.

Analysis of isotropic bond distance and bond angle
distributions

In the following we setup amodel for comparison with the intra-
chain isotropic data. Initially we note that the structure at the

monomer level is characterized by the distance distribution of
Si–O and Si–C bonds as well as the Si–O–Si, O–Si–O, C–Si–C and
C–Si–O bond angles. All distances involving the H atoms are
neglected as they contribute very little to X-ray scattering. The
distance distributions are assumed to be Gaussians, each
characterized by an equilibrium distance r and a width s. This
leads in momentum transfer space to a sum of Debye type
terms, one for each atomic pair AB considered:

sAB ¼ NABfAfB

ðP f Þ2 j0ðQrABÞexp
��Q2sAB

�
2
�

(11)

where NAB is the number of bonds of type AB per monomer unit.
This is a very similar approach as followed by Sides et al.19 for
the isotropic PDMS melt. Summing over the above-mentioned
atom pairs in the monomer this model can be directly
compared to the isotropic scattering function (s0 of eqn (8))
derived from the experimental data. This comparison allows the
determination of bond distances and angles in the un-stretched
monomer unit.

Likewise, the change in the intra-chain structure upon
deformation (Ds0 of eqn (9)) can be characterized by two addi-
tional parameters per atomic pair, one characterizing the
change in equilibrium distance Dr, and another characterizing
the change in width Ds. For atom pair AB the t function is
consequently:

DsAB ¼NABfAfB

ðP f Þ2
	
j0ðQrABÞexp

��Q2sAB

�
2
�

� j0½QðrAB þ DrABÞ�exp
	�Q2ðsAB þ DsABÞ

�
2




(12)

where the parameters for the un-deformed case (r, s) have been
kept xed. As we are tting a difference measurement,
systematic errors are expected to partially cancel.

If the intramolecular potentials VAB(r) are known, it is in
principle easy to calculate the energy change associated with the
change in the intramolecular distance distribution P:

DE ¼ NAB

ð
½PABðr; lÞ � PABðr; l ¼ 1Þ�VABðrÞdr (13)

Results and discussion
Separating entropic and non-entropic contributions from
diffraction data

An example of the X-ray diffraction patterns acquired is shown
in Fig. 2. As mentioned above, the patterns can be described in
terms of radial (s) and azimuthal (h) co-ordinates, with s being
related to radial distance in reciprocal space, Q, as given by eqn
(1). The most prominent feature is the rst diffraction peak
(FDP). The position of the FDP is well known to become
anisotropic in h during deformation, an effect attributed to the
alignment of chains.30

As anticipated in the theory section above, we nd that for all
samples and all elongations only the rst two terms in the
Legendre expansion of I(Q,h) are signicant, even with the high
signal-to-noise levels provided by the synchrotron approach.
Having determined a(Q) and b(Q) according to eqn (7), the

This journal is © The Royal Society of Chemistry 2016 RSC Adv., 2016, 6, 95910–95919 | 95913
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isotropic s0(Q) and anisotropic s2(Q) structure factors can be
derived as outlined in the theory section. Fig. 2 shows an
example of s0(Q) for sample V31. The structure factors s0(Q) and
s2(Q) are related by Fourier transform to two corresponding
radial pair distribution functions (PDFs) in real space, cf. eqn (2)
and (3). From models of the rubber structure one can generate
these PDFs and following the reverse Fourier-transform it is
therefore possible to compare predicted and experimental sets
of s0 and s2. Displayed in Fig. 3 is the difference between the
stretched and the un-stretched state: Ds0(l ¼ 2) ¼ s0(l ¼ 2) �
s0(l ¼ 1) and Ds2(l ¼ 2) ¼ s2(l ¼ 2). Noticeable, high accuracy
data is available in the entire Q-range from 0.5 Å�1 to 18.5 Å�1.
Provided the experimental data is of sufficient quality as in the
present experiment the reverse Fourier-transform approach
outlined above can be used for optimization of model param-
eters. The Fourier relationship also implies that we can separate
the inter-chain and intra-chain contributions to the structure
factors, as the former dominates at small Q and the latter at Q$

6 Å�1.19 A description of rubber elasticity based solely on
entropy implies that Ds0 is identical to zero. It is evident from
Fig. 3(a) that this is not the case, and the following sections are
devoted to analyzing these non-entropic contributions in
greater detail.

Non-entropic intra-chain behaviour

The PDF (Fig. 4(a)) counterpart to Ds0 (Fig. 3(a)) reveals that
there is little evidence for change in the average structure
beyond 4 Å, hence the structural changes mainly relate to
changes within the monomer (the unit segment in the chain).
To describe these changes, we t the high-Q part of Ds0, as
exemplied for sample V31 in Fig. 3(a), to the simple model of
the monomer comprising average bond lengths, bond angles

and widths of distributions (eqn (12)). The results of the t are
listed in Table 2. The relative changes in bond angles and bond
lengths are small – of order 10�4 – but as a general observation
the width parameter of all atomic pairs increases on deforma-
tion. The best ts of Ds0 and the corresponding real space PDF
are shown in Fig. 3(a) and 4(a), respectively. A quite satisfactory
t to the experimental data is also obtained when average
distances are constant (Dr ¼ 0). The results for the isotropic
melt are in close agreement with the results of Sides et al.19

Non-entropic inter-chain behaviour – mesoscopic strain

In Fig. 3(a) there is also evidence for a structural change around
Q ¼ 0.86 Å�1. This change corresponds to a shi DQ in the
Q-position of the FDP between the stretched and un-stretched
state. The peak position of the rst diffraction peak (FDP) and
its shi in Q as a function of h for different elongations l, as

Fig. 2 X-ray diffractionmethodology, demonstrated for sample V31 in
the un-stretched state. The measured intensity distribution I on the 2-
D detector can be described by polar coordinates (s, h), with s being
related to reciprocal space coordinate Q. Within experimental noise
we find that the distribution I(Q,h) can be described as a combination
of an isotropic (averaged over h) distribution s0(Q) and an anisotropic
distribution, s2(Q). The former is shown in the plot, the latter is identical
to zero in the un-stretched state.

Fig. 3 Experimental results for sample V31 (+) expressed as the
difference in structure factors between the stretched (l ¼ 2) and the
un-stretched state, and comparison to structural models of the intra-
chain behaviour, valid for Q $ 6 Å�1. (a) Isotropic part, revealing
changes in bond-lengths and bond-angles. The data are compared to
a fit of a structural model of the monomer. The fitted parameter values
are listed in Table S2.† (b) Anisotropic part, revealing the preferred
direction of chain segments of various lengths. A state-of-the-art
model based on non-interacting chains (green) predicts the correct
shape of the intensity variation with Q but underestimates the degree
of preferential direction. With the degree of preferred direction as the
sole fitting parameter a satisfying fit is reached (blue).

95914 | RSC Adv., 2016, 6, 95910–95919 This journal is © The Royal Society of Chemistry 2016
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exemplied in Fig. 5(a) for sample V31 at l ¼ 2.08, is determined
by two methods that were found to give very similar results. In
the rst a parabola was tted to the near peak region and the
peak position was assigned to the maximum of the parabola. The
second is a correlation method.31 The peak positions shown in
Fig. 5(b) are obtained by the parabola method. As shown in
Fig. 5(b) we nd evidence for a sinusoidal type variation of DQ
with h. This is the signature of a strain 3 ¼ �DQ/Q, acting
between chains on a mesoscopic length scale of 10–50�A.

The results of a similar analysis applied to all data sets are
shown in Fig. 6(a). Evidently, within experimental uncertainty,
all four samples display a linear relationship between the
elongation and the strain components 3k and 3t, representing
the strains in the directions parallel and perpendicular to the
elongation, respectively. The response with l varies strongly
from sample to sample, but falls on a universal straight line
when plotted against the degree of chain alignment, cf. Fig. 6(b).
The hypothesis of a strong correlation between strain and chain
alignment is corroborated by the fact that upon un-stretching
both strain and chain order vanished. On a note it is observed
that for some samples (including the V41 sample used in Fig. 6)
the peak positions averaged over all orientations dried
systematically by about 2 � 10�4. This presumably articial
dri (caused for example by an unstable sample position) has
been corrected for in Fig. 3(a). It does not affect Fig. 6(b), since

Fig. 4 Results in real space for the (a) isotropic and (b) anisotropic
response at different length scales for sample V31, expressed as the
difference between the deformed (l ¼ 2) and the un-deformed state.
The corresponding plots for Q-space are shown in Fig. 3. The
experimental results are compared to models, as explained in the
caption to Fig. 3.

Table 2 Average bond lengths (r) and associated widths (s) in the
distance distributions as well as derived average bond angles for
sample V31 in the un-loaded and loaded state. The parameters result
from a fit of the isotropic experimental data in Fig. 3(a) to the scattering
arising from a model of the structural unit. * Fit of s is restricted to
values larger than 0.08 Å, |Ds| to values greater than 10% of s

r, s (l ¼ 1)
Dr, Ds
(l ¼ 2 � l ¼ 1)

Relative change
Dr/r, Ds/s

rSiO/Å 1.642 �6.0 � 10�4 �3.7 � 10�4

sSiO/Å 0.111 4.5 � 10�3 4.0 � 10�2

rSiC/Å 1.869 �2.8 � 10�4 �1.5 � 10�4

sSiC/Å 0.143 4.4 � 10�3 3.1 � 10�2

rSiSi/Å 3.160 �4.2 � 10�4 �1.3 � 10�4

sSiSi/Å 0.139 3.5 � 10�3 2.5 � 10�2

rOO/Å 2.736 1.2 � 10�3 4.6 � 10�4

sOO/Å *0.080 �5.4 � 10�3 �6.8 � 10�2

rCC/Å 3.055 �10.4 � 10�3 �3.4 � 10�3

sCC/Å *0.080 7.8 � 10�3 9.7 � 10�2

rOC/Å 2.858 1.0 � 10�4 3.6 � 10�5

sOC/Å 0.200 1.2 � 10�2 6.0 � 10�2

OSiO/� 112.8 7.9 � 10�2 7.0 � 10�4

CSiC/� 109.6 �5.5 � 10�1 �5.0 � 10�3

SiOSi/� 148.4 �5.3 � 10�2 �3.6 � 10�4

Fig. 5 Analysis of mesoscopic strain. (a) Intensity ratio between the
deformed and the un-deformed state at the position of the intensity
maximum of the FDP for sample V31 and l ¼ 2.08. The solid line is the
fit of eqn (14). (b) Relative shift in peak position of the intensity
maximum. The solid line is a fit to a sinusoidal function.
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Fig. 6(b) only involves the difference in peak position between
parallel and perpendicular orientation.

The elastic inter-chain strain 3 is of the order 6 � 10�4

(Fig. 6) at l ¼ 2. Notably, this strain response at the 10–50 Å
scale is associated with two unusual properties. Firstly, it is 3–4
orders of magnitude smaller than the macroscopic strain. In
contrast, for crystalline and amorphous materials with solid-
like elasticity the relation is close to 1 : 1. Secondly, the sign is
remarkable: the compressive direction of the strain is along the
macroscopic tensile direction. This may be explained by
entanglements introducing restraints on the polymer chain. All
investigated rubbers include entanglements as the molecular
entanglement weight of PDMS is 12 kg mol�1.32 When the
rubber is stretched the locked entanglements relax and one
possible way to do so is for the entanglement to slide along the
chain and approach the line/plane of the restricting crosslinks.
Thereby the polymer chain will experience a stretch in the
compressive direction (short part of polymer chain) and the
longer part of the polymer chain will be released and allowed to
possess ideal behaviour with respect to random walk behaviour
as for traditional polymer deformation descriptions.

Non-entropic energy contributions

For calculation of the energy change associated with the change
in the intra-molecular distance distribution P derived from the
results in Table 2 we utilize eqn (13). Unfortunately, the
potentials VAB(r) as dened in eqn (13) are not known to a high
accuracy and additional uncertainty is introduced from the fact
that experimental data are convoluted by an instrumental
resolution function. However, based on the intra-molecular
potentials of Frischknecht et al.33 we calculate values in the
order of DE ¼ 1 kJ mol�1 (of monomer). It is possible that the
increased width of the distance distribution in part is the result
of an inhomogeneous strain distribution such as sometimes
found in computer models of entangled networks.34

Assuming that on the molecular level the energy required for
generating the inter-chain strain (of the order 6 � 10�4 at l ¼ 2
according to Fig. 6) is given by the larger bulk modulus rather
than Young's modulus,35 and is ultimately related to the energy
required for the methyl side groups to move from their equi-
librium positions, we estimate for the inter-chain contribution
DE ¼ 0.5K32M/r z 0.01 J mol�1, orders of magnitudes smaller
than what we just estimated for the intra-chain contributions.

In conclusion these results indicate that intra-chain energy
is the dominating energetic contribution to the elasticity in
PDMS based rubbers. The effect is noticeable even at the
smallest steps of elongation:�10%, and approximately linear in
the strain regime investigated.

Anisotropic contribution

For completeness, we comment also on the anisotropic struc-
ture factor. As shown in Fig. 3(b), the largest effect is seen below
Q ¼ 2 Å�1 (out of scale on the gure). This is the previously
mentioned well-known effect of ordering of the chains. It is
informative to compare the results in Fig. 3(b) to predictions
from a state-of-the-art model,34 which does not take chain
interaction into account. In this model an ensemble of isolated
self-avoiding molecular chains is generated and the macro-
scopic strain condition is imposed. The potentials of Frisch-
knecht et al.33 are utilized as basis for the model. Let the chains
have end-to-end vectors (x0, y0, z0) and let the averages of the
absolute projections be h|x0|i ¼ h|y0|i ¼ h|z0|i. To represent the
stretched rubber, by simulated annealing we eliminate chains
from and re-include chains into this ensemble such that the
end-to-end distance distribution at the end fullls the macro-
scopic strain condition (with z being the tensile axis):

h|z|i ¼ lh|z0|i, h|x|i ¼ h|x0|i/Ol, h|y|i ¼ h|y0|i/Ol (14)

The predicted response is shown in Fig. 3(b) as a green curve.
The predicted shape is in good agreement with the experiment,
but the amplitude is not. Using the amplitude as the only t
parameter a satisfying t is obtained (blue curve). The four
samples all exhibit a similar behavior and quality of t to data.
However, the tted amplitude – listed in Table 3 – varies
substantially. We attribute these variations in amplitude to
different levels of preferred directionality of chain segments
caused by different degrees of chain entanglement. We nd that

Fig. 6 Characterization of the strain 3, acting between chains. (a)
Variation as a function of elongation parameter l for the four types of
rubber: V31, V35, V41 and Elastosil. Open and filled symbols refer to the
strain components 3t, and 3k, perpendicular (h ¼ 90�) and parallel (h¼
0�) to the direction of the elongation respectively (h is defined in Fig. 2).
Solid lines are fits of straight lines through (0, 0). (b) Linear correlation
between the difference between strain components, 3t � 3k, and the
inter-chain ordering – measured by the relative intensity difference of
the FDP at h ¼ 0� and h ¼ 90�.
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the individual SiO bonds point preferentially in the tensile
direction. The degree of preferred orientation depends on the
number of monomer units in the model. For a 391 monomer
chain – that equals the average chain length in V31 – we nd
a 1.9% increased likelihood of parallel orientation at l ¼ 2. We
tested another deformation model, the affine model,36 which
enforces eqn (14) to be valid for each chain instead of only for
the ensemble averages, leading to similar results.

Based on the above results we argue that the analysis of the
anisotropic structure factor provides a unique possibility to test
models of chain interaction. The results in Fig. 3(b) for higher
Q's are novel, and represent an opportunity for testing models
on different length-scales.

Physical interpretation of the preferred orientation parameter

The preferred orientation parameter may seem random from the
above results, but from the network characteristics in Table 1 it is
obviously related to the chain mobility with high chain mobility
leading to increased preferred orientation. Firstly, for the unlled
networks the preferred orientation parameter of V31 is signi-
cantly larger than that of V35 and V41. To understand this recall
that a crosslinker with functionality of f ¼ 3 causes a very so
network since partial crosslinking reaction (due to steric
hindrance etc.) will contribute to chain extension rather than
result in crosslinking sites. Furthermore, looking on one partic-
ular PDMS chain from a 3-functional crosslinker, this chain will
only have two anchoring points and thus be much more mobile
compared to that from a 4-functional crosslinker. Hence, the
chain mobility of V31 (f ¼ 3) will be increased relative to that of
V35 and V41 (both f ¼ 4). Secondly, the preferred orientation
parameter for the lled elastomer is high, and thismay simply be
due to the low crosslinking density since the commercial elas-
tomer contains signicant amounts of llers leading to physical
interactions only and thereby also a reduction of the chemical
crosslinking density; i.e. increased chain mobility.

These results are counterintuitive from the point of view that
increased chain mobility should lead to easier relaxation and
thus less preferred orientation. However, they can be explained
by the following hypothesis. Here we simplify the system to two
“1-time” entangled polymer chains conned by four cross-
linking sites placed at the four corners of a square. This is
illustrated in Fig. 7. When the system is stretched, the chains
and entanglement will relax. When the entanglement relaxes, it
nds an energy minimum by moving to a position close to the
nearest pair of crosslinking sites, either above or below the
entanglement depending on its original position.

Each polymer chain can then be considered as a short part
(with the main orientation perpendicular to the stretch) and
a long part (with the main orientation along the stretch). The
entropy of the entire chain is described as the sum of entropies
of the two parts, which will give an overall energy minimum
when the long part is as long as possible. In other words, the
short parts of the chains will align in the plane perpendicular to
the stretch to allow the long parts of the chains as much entropy
as possible. More chain mobility will then allow the entangle-
ment to come closer to the pair of conning crosslinks and thus
result in increased preferred orientation of the polymer chains.
The simplied derivations have been shown in ESI† where it is
shown that entropy is gained by allowing the entanglement to
slide and that bond stretching can be facilitated energetically.

Additionally, this hypothesis can describe why a microscopic
stretch occurs perpendicular to the macroscopic stretch direc-
tion. This will be possible if dH < TdS, i.e. if the gain in entropic
energy is larger than the enthalpic increase from the stretching
of Si–O bonds.

Finally this can lead towards a better understanding of the
behavior of silicone-based dielectric elastomers for which
constitutive equations have been proposed.37–40 Despite the
proposed constitutive equations being excellent in describing
the mechanical properties of the elastomers, the explanation of
why the electrical breakdown strength is increased with
strength for non-hardening elastomers remain unanswered.41

Conclusions

This work demonstrates the limitations of the current type of
models for describing rubber elasticity, in particular the need to
include non-entropic terms. This is done by means of a novel
X-ray based method enabling the determination of the struc-
tural changes of rubbers on the 2–50 Å length scale during in
situ stretching. By using high-energy X-rays from a synchrotron

Table 3 The results for the preferred orientation parameter is ob-
tained by scaling themodel described in themain text to the amplitude
of g2 in Fig. 4(b), and reflects the increased likelihood of a SiO bond to
point in the tensile direction compared to an isotropic distribution at
l ¼ 2. * The values for V41 and Elastosil are extrapolated to l ¼ 2

V31 V35 V41 Elastosil

Preferred orientation parameter (%) 1.9 0.2 0.6* 1.4*

Fig. 7 Illustration of how the entanglements are relaxed in order to
maximize chain entropy. The system is defined as two chains confined
by one entanglement and four crosslinking points. (a) Before stretch.
(b) After affine stretch of both crosslinking sites and entanglement. (c)
Relaxation of entanglement to allow for maximum entropy.
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the data acquisition is sufficiently fast avoiding any noticeable
plastic ow.

The investigated silicone rubbers range from very so with
no reinforcing agents to a commercial silicone elastomer with
reinforcing agents. Universally we nd that:

�Within experimental noise, the data can be modelled using
only the rst two terms in the Legendre expansion in eqn (7); an
isotropic and an anisotropic term.

� An elastic inter-chain strain response appears at the scale
of 10–50 Å with the compression direction along the macro-
scopic tensile direction. The strain is of the order 6 � 10�4 at an
elongation of l ¼ 2, corresponding to an energy contribution of
the order of 0.01 J mol�1. The response with l varies with
entanglement, but falls on a universal straight line when plotted
against the degree of chain alignment. This strain is hypothe-
sized to arise from trapped entanglements relaxing to positions
near the conning pair of crosslinking sites, thereby allowing
a strong alignment of the short part of the chain in order to
maximize the entropy of the long part of the chain.

� The intra-chain contribution to the free energy is
substantially larger, in the order of DE ¼ 1 kJ mol�1. While the
relative change of bond lengths and bond angles is of the order
10�4, the bond length and bond angle distributions are 5–10%
wider at l ¼ 2. These features appear in the anisotropic part of
the scattering signal and can be described qualitatively by
a simple model of the response of an isolated self-avoiding
molecular chain. However, the amplitudes vary substantially
with sample, but can in all cases be well accounted for by a one-
variable t. We attribute these variations in amplitude to
different levels of preferred directionality of chain segments
caused by different degrees of chain entanglement.

The experimental approach presented is generic and may
nd use also for in situ studies of polymers in the glass, liquid
and semi-crystalline states. Likewise, it may be extended to use
with isotope substituted samples and neutron diffraction for
studies of chain interaction. Furthermore, from the application
standpoint, we point out that mapping of strain is made
possible by this study in products made of rubber such as tires
and seals as well as in other polymeric products such as paints
and thermoplastics.
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S1. Details of Characterization

                  

Figure S1. The applied crosslinkers for the silylation based crosslinking reaction. Left: The three-
functional crosslinker (Tris(dimethylsiloxy)phenylsilane). Right: The four-functional crosslinker 
(Tetrakis(dimethylsilyl) orthosilicate).

Figure S2. Mechanical properties. Reversing large amplitude oscillatory elongation on the strongest 
(Elastosil) and softest (V31) networks. The strain rate is ν = 0.02 s−1.
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Table S1: Properties of the applied polymers. The molecular weight Mn was determined by Size 
Exclusion Chromatography. The polydispersity index, PDI = MW/Mn, was determined by 1H NMR 
measurements. The methods are described in (13).

Polymer Mn [g/mol] PDI

V31 29,000 1.3

V35 49,500 1.5

V41 62,400 1.6

Table S2: Average bond lengths (r) and associated widths () in the distance distributions as well as 
derived average bond angles for sample V31 in the loaded and un-loaded state. The parameters result 
from a fit of the isotropic experimental data in Fig 2a to the scattering arising from a model of the 
structural unit. 1: Fit of σ is restricted to values larger than 0.08 Å, |Δσ| to values greater than 10% of σ.

r0, σ  (λ=1)
Δr,Δσ

(λ=2 - λ=1)

Relative 
change 

Δr/r0, Δσ/σ
rSiO / Å 1.642 -6.0 10-4 -3.7 10-4

σSiO/ Å 0.111 4.5 10-3 4.0 10-2

rSiC / Å 1.869 -2.8 10-4 -1.5 10-4

σSiC/ Å 0.143 4.4 10-3 3.1 10-2

rSiSi / Å 3.160 -4.210-4 -1.3 10-4

σSiSi/ Å 0.139 3.5 10-3 2.5 10-2

rOO / Å 2.736 1.2 10-3 4.6 10-4

σOO/ Å 10.080 -5.4 10-3 -6.8 10-2

rCC / Å 3.055 -10.4 10-3 -3.4 10-3

σCC/ Å 10.080 7.8 10-3 9.7 10-2

rOC / Å 2.858 1.010-4 3.6 10-5

σOC/ Å 0.200 1.210-2 6.0 10-2 

<OSiO /deg 112.8 7.9 10-2 7.0  10-4

<CSiC /deg 109.6 -5.5 10-1 -5.0 10-3

<SiOSi /deg 148.4 -5.3 10-2 -3.6 10-4
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Table S3: The results for the preferred orientation parameter is obtained by scaling the model described 

in the main text to the amplitude of g2 in Fig S4b, and reflects the increased likelihood of a SiO bond to 

point in the tensile direction compared to an isotropic distribution at λ=2. 1The values for V41 and 

Elastosil are extrapolated to λ=2.

Polymer V31 V35 V41 Elastosil

Preferred orientation parameter / % 1.9 0.2 0.61 1.41

S2. Details of Entropic and Enthalpic Contributions

The entropy of stretching of polymer chains is generally written in the simplified form under the 
assumption that the polymer chains behave according to Gaussian random walks1:

∆𝑆 =‒
3
2

𝑘 
𝑅2

𝑅2
𝑜

=‒
3
2

𝑘 
𝑅2

𝑁𝑏2
(S1)

Where k is the Boltzmann’s constant, R and Ro are the perturbed and unperturbed end-to-end distances 
of the polymer, respectively, and N is the number of Kuhn steps of length b. 

If the chains are confined by entanglements moving affinely with the deformation, the change in entropy 
upon stretching of a polymer chain with  entangled chains can be expressed as:𝑁/𝑁𝑒

∆𝑆' =‒
3
2

𝑘
𝑁
𝑁𝑒

 
𝑅2

𝑛

𝑁𝑒𝑏2

(S2)

Where  is the number of Kuhn steps in an entanglement and  is the perturbed end-to-end length of 𝑁𝑒 𝑅𝑛

the chain segment with the characteristic entanglement length.

If we assume simplistically that we allow one entanglement to slide upon the deformation, the two 
surrounding polymer segments, each of length , are replaced with two polymer segments of 𝑁𝑒𝑏

approximate lengths 0 and . The entropy of stretching of such a configuration can be written:2𝑁𝑒𝑏

∆𝑆'' =‒
3
2

𝑘(( 𝑁
𝑁𝑒

‒ 2) 
𝑅2

𝑛

𝑁𝑒𝑏2
+  

2𝑅2
𝑛

2𝑁𝑒𝑏2) =‒
3
2

𝑘( 𝑁
𝑁𝑒

‒ 1) 
𝑅2

𝑛

𝑁𝑒𝑏2

(S3)

Since entropy is a state function, the gained entropy from entanglement sliding in the stretched state can 
be calculated as:
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∆𝑆𝑠𝑙𝑖𝑑𝑒 = ∆𝑆'' ‒ ∆𝑆' =
3
2

𝑘 
𝑅2

𝑛

𝑁𝑒𝑏2

(S4)

In other words, when the entanglement is sliding, the decrease in entropy upon stretch is minimized and 
thus entropy is maximized and this can be facilitated by stretching the chains.

The magnitude of enthalpy is evaluated by the expression from Khazanovich2:

𝐹𝑒

𝐹
=‒

𝜀
𝑓

∂𝑔
∂𝜀

/
∂𝑓
∂𝑔

(S5)

Where  is the total stretching force,  is the enthalpic contribution to the stretching force,  is the 𝐹 𝐹𝑒 𝜀
reduced stiffness,  is dimensionless force, and  is the degree of chain stretching given by:𝑓 𝑔

𝜀 =
𝑏2𝐾𝑠

𝑘𝑇
(S6)

𝑓 =
𝑏𝐹
𝑘𝑇

(S7)

𝑔 =
〈ℎ𝑓〉
𝑁𝑏

(S8)

Where Ks is the stiffness coefficient of the Kuhn segment and hf is the projection of the vector 
connecting the ends of the chains onto the stretching axis.

The solution to the above equation in terms of the degree of chain stretching can be written under the 
assumption that ε >>1:

𝑔 =
𝑓
𝜖

‒
1
𝑓

+
(𝜖 + 1) + coth (𝑓)

𝜖 + 𝑓coth (𝑓)
(S9)

The assumption is not strictly correct as the Si-O bonds are rather flexible but the assumption does not 
change the order of magnitude of the solution.

If we assume that the allowed stretching force is of the order of several  according to the results for 𝑘𝑇
the entropy gain from sliding, the  reduces to 1 and the expression can be simplified to:coth (𝑓)

𝑔 =
𝑓
𝜖

‒
1
𝑓

+
(𝜖 + 1) + 𝑓

𝜖 + 𝑓
= 1 +

𝑓
𝜖

‒
1
𝑓

+
1

𝜖 + 𝑓
(S10)

Further assuming that the reduced stretching force is greater than the reduced stiffness, i.e. f >> ,  𝜖
following simplified equation is obtained:

𝑔 = 1 +
𝑓
𝜖

= 1 +

𝑏𝐹
𝑘𝑇

𝑏2𝐾𝑠

𝑘𝑇

= 1 +
𝐹

𝑏𝐾𝑠
~1 +

𝑇∆𝑆𝑠𝑙𝑖𝑑𝑒/𝑏

𝑏𝐾𝑠
~1 +

𝑇∆𝑆𝑠𝑙𝑖𝑑𝑒

𝑏2𝐾𝑠

(S11)

Hereby it is shown by a very simplistic approach that the degree of chain stretching grows linearly with 
the entropy gain from allowing sliding of entanglements.
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