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Supplemental Material: Linking the dielectric Debye process in mono-alcohols to their
density fluctuations.

I. EXPERIMENTAL DETAILS

The samples were purchased from Sigma-Aldrich at purity ≥ 99.6 % for 2-ethyl-1-hexanol and purity ≥ 99 % for
4-methyl-3-heptanol (mixture of isomers). The samples were used as received.

All bulk and shear modulus measurements were carried out in the same experimental set-up, at the same tempera-
tures (however, the shear modulus measurement included some lower temperatures than the bulk modulus measure-
ment) and frequencies.

The set-up includes a custom-built closed-cycle cryostat able to keep the temperature stable within about 1 mK.
The electronics of the set-up consist of a custom-built generator for frequencies up to 100 Hz, a HP 3458A multimeter
(measuring at low frequencies) and an Agilent E4980A Precision LCR meter (measuring frequencies up to 2 MHz).

Further details of the experimental set-up is given in Refs. [S1, S2]. Details of measuring techniques in given Ref.
[S3] (shear modulus technique) and Refs. [S4, S5] (bulk modulus technique).

II. SHEAR MECHANICAL DATA

Shear modulus data for 2-ethyl-1-hexanol (2E1H) was published in Refs. S6 and S7, but rather than using the
old data we decided to measure again. This was done for several reasons: 1) previous measurements were carried
out at slightly different temperatures 2) measurements were performed in a different experimental set-up 3) for the
data extraction procedure described in below it was a “cleaner” implementation when data points are measured at
identical frequencies as in the bulk modulus measurement instead of shifting a master curve in frequency and then
interpolating between frequencies to match the bulk modulus measurement.
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FIG. S1: Real (a) and imaginary (b) part of the shear modulus of 2E1H at temperatures from 170 K to 144 K in
steps of 2 K.

Shear modulus was thus re-measured in the same experimental set-up as the bulk modulus, changing only the
measuring cell while the cryostat, cryostat stick, and electronics were identical under the two measurements. Data
are shown in Fig. S1. The data agree well with previously published shear modulus data [S6, S7] for 2E1H.

Previously published shear modulus data for 4-methyl-3-heptanol (4M3H) [S7] were taken in the same experimental
setup as the bulk modulus data, so there was no need to re-measure the shear modulus for 4M3H.
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FIG. S2: Model of the PBG. The transformer (also marked by a vertical dashed line) separates the electrical and the
mechanical side of the model. The encircled area shows the part that is only present when the PBG is filled. An
empty transducer corresponds to the mechanical port of the model being shorted. The electrical side (left of the
transformer, T ) the capacitance C1 models the electrical capacitance of the piezo-electric ceramic shell. On the

mechanical side (right of the transformer) the RCL-circuit models the mechanical properties of the ceramics. The
transformer models the piezo-electric conversion of the applied electrical field to mechanical displacement. When

there is liquid in the PBG, there is an extra (complex) capacitance due to the liquid (Cliq), and an extra (complex)
resistor (Rhyd) modeling the flow in the filling pipe.

III. MODEL FOR THE PBG

This section gives the background for the data treatment of the bulk modulus data and is essential to the conclusions
drawn.

The PBG can be modeled by an electrical diagram, where each element represents a particular property of the PBG
[S5]. Such a diagram is essentially a simple way of constructing the constitutive equations of the PBG in a physically
consistent manner.

Figure S2 shows the electrical diagram model of the PBG. The model has an electrical side (left) and a mechanical
side (right) where the volume V plays the role of electrical charge Q and the pressure P is the equivalent of the
voltage U on the electrical side. The transformer (separating the two sides of the diagram) represents the piezo-
electric conversion of electrical voltage to a mechanical displacement. The capacitance on the electrical side C1

models the electrical capacitance of the piezo-electric ceramic shell. On the mechanical side, the RCL-circuit models
the mechanical properties of the ceramics. When there is liquid in the transducer, an extra (complex) capacitance
due to the liquid (Cliq), and an extra (complex) resistor (Rhyd) modeling the flow in the filling pipe is added to the
model.

Using the simple rules for adding electrical network elements (impedances added in series, admittances added in
parallel), we arrive at the following expression for the measured capacitance, i.e., the response when measured at the
electrical side of the model

Cm(ω) = C1 + T 2 1

1
C2

+ iωR− ω2L+

[
1

1
iωRh

+Cliq

] , (S1)

where the expression in the square brackets only is present if the PBG is filled with liquid.
Equation (S1) can be rewritten in some convenient variables: the clamped (high-frequency limit) capacitance

Ccl = C1, the free (low-frequency limit) capacitance Cfr = C1 + T 2C2, the resonance frequency ω0 =
√

1/LC2, and

the quality factor Q = 1/R
√
L/C2. The rewritten expression is then

Cm(ω) = Ccl +
Cfr − Ccl

1 + i ω
ω0

1
Q −

ω2

ω2
0

+

[
C2

1
iωRhyd

+Cliq

] . (S2)

The hydrodynamic flow resistance Rhyd is proportional to the shear viscosity, ηG. Assuming a Poiseuille flow (see
Sec. IV below), the factor of proportionality is given by

A =
8L

πa4
, (S3)

where L is the length of the pipe and a is the radius. Inserting this and rearranging Eq. (S2) to isolate Cliq (which is
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FIG. S3: Real and imaginary parts of the measured stiffness of 2-ethyl-1-hexanol (2E1H) and the silicone oil,
tetraphenyl-tetramethyl-trisiloxane (DC704). At low frequencies, the real part of the measured stiffness goes to zero
(solid line), because the liquid has time to flow in and out of the small filling tube and thus there is no resistance to
the deformation of the piezo-ceramic shell. In the imaginary part this is seen as a peak, the Helmholtz mode. In the

real part the limiting low- and high-frequency moduli, K0 and K∞ are indicated by red dashed lines. The simple,
purely viscous correction (see Eq. (S1)) is shown in both real and imaginary parts as the dashed line. It corresponds

to the “subtraction” of the dotted black line in the imaginary part. While this procedure works perfectly in
non-associated molecular liquids, extending the frequency range of the bulk modulus by approximately 1 decade

(shown here for DC704), it clearly leads to an extra peak in the imaginary part and a corresponding extra step in
the real part in the case of 2E1H. This apparent extra process comes from the “shoulder” indicated by an arrow in

the imaginary part of the 2E1H spectrum. The shoulder is consistent with the slow polymer-like frequency
dependence of the shear viscosity in 2E1H recently documented [S7] influencing the Poiseuille flow. Inserting the

measured frequency-dependent shear modulus in the model (Eq. (S5)) completely removes this shoulder and reveals
the true bulk modulus (blue circles).

the signal we are after), we arrive at

Cliq(ω) = C2

(
F−1 − 1− i ω

ω0

1

Q
+
ω2

ω2
0

)−1
− 1

iωAηG
(S4)

where F = Cm(ω)−Ccl

Cfr−Ccl
.

For liquids that display a “simple” low-frequency behavior in the shear modulus (e.g., most non-associated molecular
liquids), it is sufficient to plug in the DC viscosity in the model (corresponding to a pure resistor in the network in
place of the Rhyd-box in Fig. S2). A more sophisticated model takes the frequency-dependence of the viscosity into
account. This could either be done by putting in a more complicated model for Rhyd, but one could also plug in the
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actual measured shear viscosity. Since ηG = G
iω , where G is the complex shear modulus we finally arrive at

Cliq(ω) = C2

(
F−1 − 1− i ω

ω0

1

Q
+
ω2

ω2
0

)−1
− 1

AG
. (S5)

The bulk modulus (with the “subtracted” hydrodynamic flow in the filling pipe) is obtained as follows

KS(ω) =
V

Cliq(ω)
, (S6)

where Cliq is given by Eq. (S5).
The procedure is illustrated in Fig. S3, where both the pure viscous correction and the correction including the

frequency-dependence of the viscosity is shown for 2E1H. For comparison, we show how the pure viscous correction
works for a non-associated molecular liquid, the commercial silicone oil DC704 [S5].

IV. COMMENTS ON THE POISEUILLE FLOW ASSUMPTION

In fluid dynamics, the Poiseuille law relates the flowrate, V̇ to the pressure drop δP over the pipe

V̇ = RhydδP , (S7)

where the hydrodynamic resistance Rhyd inversely proportional to the fluid’s viscosity, η. The constant of propor-
tionality is the geometrical constant given by Eq. (S3).

The assumptions of Eq. (S7) are that 1) the liquid is incompressible and Newtonian, 2) the flow is laminar, 3) there
is no acceleration of fluid in the pipe and 4) the pipe has constant circular cross-section and the length of the pipe is
substantially longer than its radius.

In our case we do not have a constant flow, but a pulsating flow where the frequency of the pulsations varies from
1 mHz to 10 kHz. Of course assumption of zero acceleration no longer holds, but the requirement of a laminar flow
translates into the frequency of pulsations being sufficiently low so that a parabolic velocity profile has time to develop
during each cycle. In that case the Poiseuille equation hold to a good approximation. This is fulfilled when Womersley
number, α, is small. Wormersley number is given by

α = a

√
ωρ

η(ω)
. (S8)

where ω is the angular frequency, ρ is the density, η is the frequency-dependent viscosity and a is the radius of the
pipe.

In Fig. S4 the Womersley number is shown as a function of frequency and temperature in the case of 2E1H and
clearly shows that |α| < 1 at all temperature in the relevant frequency range, and thus assumptions two and three
are met.

The filling pipe is cylindrical, the radius is approximately a ≈ 1.5 mm, while the length is approximately L ≈ 4 mm.
The requirement that a/L� 1 is maybe not completely met. However, when in a pulsating flow the problem is smaller
at high frequencies. In agreement with this, we observe that the correction building on the Poiseuille flow assumption
gradualy breaks down for low frequencies (i.e., for frequencies lower than the peak frequency of the Helmholtz mode,
see Fig. S3).

The Poiseuille equation has been shown to work (surprisingly) well for supercooled molecular liquids at the frequency
ranges and pipe dimensions explored here [S5].

V. DETERMINING THE GEOMETRIC FACTOR

The geometric factor in Eq. (S3) that enters the calculation of the Poiseuille flow correction consist of the length,
L, and diameter, a, of the filling tube. In principle, these quantities can be determined by measuring directly the
dimension of the tube. In practice, this is not so easy since the filling tube is hidden at the bottom of a larger liquid
reservoir, and so it is difficult measure the tiny dimensions accurately inside measuring cell.

Instead we ‘calibrate’ the geometrical constant with another set of shear and bulk modulus data measured in
the same experimental set up, and – in the case of the bulk modulus – in the same measuring cell. The data are
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FIG. S4: Womersley number calculated as a function of frequency for 2E1H at several temperatures. When α is
small (< 1), it means the frequency of pulsations is sufficiently low that a parabolic velocity profile has time to

develop during each cycle, and the flow will be very nearly in phase with the pressure gradient. The flow will then
be given by Poiseuille’s law to a good approximation, using the instantaneous pressure gradient.
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FIG. S5: Shearviscosity of 1,2-propanediol measured directly as the low-frequency plateau of the real part of the
complex shearviscoity, η = G/iω, and as inferred from the Poiseuille flow in the bulk transducer described in the

text (for more details, see Ref. [S5]). Data are from Ref. [S8]. This determines the geometric factor of the
translation between hydraulic resistance and shear viscosity for that particular transducer (named q10 for internal

reference) to A = 3.6× 109 m−3.

1,2-propandiol data published in Ref. [S8]. In Fig. S5 we show the static shear viscosity as determined from the low-
frequency plateau value of the frequency-dependent viscosity measured in the PSG (green circles) as well as the static
shear viscosity determined by the Helmholtz mode [S5] with a geometric factor adjusted, so the two curves coincide.
The geometric factor used for correcting the low-frequency side of the bulk modulus spectra was A = 3.6× 109 m−3.
This values agrees qualitatively with the number found when inserting the values for radius and length stated in Sec.
IV above in Eq. (S3).
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