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Scaling of the dynamics of flexible Lennard-Jones chains:
Effects of harmonic bonds
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The previous paper [A. A. Veldhorst et al., J. Chem. Phys. 141, 054904 (2014)] demonstrated that
the isomorph theory explains the scaling properties of a liquid of flexible chains consisting of ten
Lennard-Jones particles connected by rigid bonds. We here investigate the same model with harmonic
bonds. The introduction of harmonic bonds almost completely destroys the correlations in the equi-
librium fluctuations of the potential energy and the virial. According to the isomorph theory, if these
correlations are strong a system has isomorphs, curves in the phase diagram along which structure,
dynamics, and the excess entropy are invariant. The Lennard-Jones chain liquid with harmonic bonds
does have curves in the phase diagram along which the structure and dynamics are invariant. The
excess entropy is not invariant on these curves, which we refer to as “pseudoisomorphs.” In particular,
this means that Rosenfeld’s excess-entropy scaling (the dynamics being a function of excess entropy
only) does not apply for the Lennard-Jones chain with harmonic bonds. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934973]

I. INTRODUCTION

The dynamics of a viscous liquid near the glass transition
is very state-point dependent. Relatively small changes in
temperature or pressure can change the relaxation time and
the viscosity significantly. The dynamics of a liquid are
usually dependent on two state variables, and this state-point
dependence is material specific. A general understanding of
the state-point dependence of the dynamics of liquids has long
been a goal in the field of liquid-state and glass physics.1–3

Experimental results by Tölle and co-workers4,5 indicated
that the problem of what controls the relaxation time of
viscous liquids might be simplified, if instead of pressure p
and temperature T , one focuses on density ρ and temperature.
It was found that the dynamics of ortho-terphenyl measured at
different state points can be collapsed onto a single curve by
plotting it as a function of h(ρ)/T , with h(ρ) = ρ4. Later results
have shown that the dynamics of many liquids can be collapsed
when plotted as a function of h(ρ)/T , albeit with a material-
dependent h(ρ).6–8 A review by Roland et al.9 established that
for many liquids h(ρ) is well approximated by a power law
of the density, ργs, with γs being a material specific scaling
parameter. We refer to this as power-law density scaling.
The fact that the dynamics of some liquids were found to
be a function of the combined variable ργs/T indicated that
there might be a single underlying quantity that “controls” the
dynamics.

Some liquids have strong correlations in the equilibrium
fluctuations of the energy and pressure.10–12 Specifically, these
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correlations are found in the configurational parts of the energy
E and pressure p, i.e., the potential energy U and the virial
W , respectively. These only depend on the positions ri of
the particles, in contrast to the kinetic energy K and the
temperature, which only depend on the momenta pi of the
particles,

E = K(p1, . . . ,pN) +U(r1, . . . ,rN), (1)
pV = N kBT(p1, . . . ,pN) +W (r1, . . . ,rN). (2)

The UW correlations are quantified by the standard Pearson
correlation coefficient

R =
⟨∆W∆U⟩
(∆W )2� 
(∆U)2�

, (3)

where∆ denotes the difference from the mean (∆U = U − ⟨U⟩)
and angular brackets denote the NVT ensemble average (con-
stant number of particles, volume, and temperature). Liquids
with R > 0.9 were initially called “strongly correlating,” but
since this sometimes led to confusion with strongly correlated
quantum systems, they are now referred to as “Roskilde
simple” liquids or just “R liquids.”13–21

The discovery of this class of liquids subsequently led
to the development of the isomorph theory.22,23 The isomorph
theory explains why R liquids have many properties that make
them simpler than other liquids. The main prediction is that
liquids that belong to this class have curves in their phase
diagram called isomorphs, along which many properties are
invariant. The invariance includes the dynamics, structure, and
excess entropy (the entropy minus the entropy of the ideal gas
at the same temperature and density).23 These liquids thus have
a phase diagram that is effectively one dimensional for these
properties (but not for, e.g., the pressure and the free energy).
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The isomorph theory provides a theoretical explanation
for the empirical power-law density scaling. The theory does
not assume anything about the functional form of h(ρ), and
it was indeed discovered that for many model liquids24–27 and
two real liquids28 that h(ρ) is not well approximated by a power
law if the change in density is larger than 10%–20%. Power-
law density scaling is a good approximation when density
changes are small, which is often the case in experiments.
Simple power-law density scaling also works in the case of
low-density supercritical fluids.29,30 Another advantage of the
isomorph theory is that it provides a prediction for the (density-
dependent) value of γs, which was previously treated as an
empirical parameter. Thus, γs can be estimated independently
of the scaling procedure, although this is much more easily
done in computer simulations23,27,31 than in experiments.32,33

The isomorph theory is consistent with another scaling
method, which was proposed by Rosenfeld34 and later in a
slightly different form by Dzugutov.35 In this scaling, the
dynamics of many liquids were found to be a function of
the excess entropy. Since excess entropy and the dynamics
are both invariant along isomorphs, this is in agreement with
the isomorph theory, although the isomorph theory does not
predict which function expresses the relaxation time in terms
of the excess entropy.

Initially, the isomorph theory was tested on simple atomic
model systems23,24 and small rigid molecules.25 However,
liquids that have been shown to obey power-law density scaling
are usually organic liquids with often internal degrees of
freedom. In particular, many polymeric liquids obey power-
law density scaling. This led us to investigate the applicability
of the isomorph theory to flexible chain molecules in our
previous publication (Paper I).36 We showed that the isomorph
theory describes the properties of the flexible Lennard-
Jones chains very well, except for small deviations due to
intramolecular effects. These effects were due to the covalent
bonds in the chain, which do not scale with density.

In Paper I,36 the covalent bonds were simulated using a
constraint algorithm to keep the bond length fixed. This is not
the most common way to simulate molecules with molecular
dynamics.37 In the field of (bio)chemistry, for instance, coarse-
grained and all-atom models generally have force fields
that model covalent bonds as harmonic springs.38–40 In this
paper, we show that the bond type has large implications on
the applicability of the isomorph theory. We show that the
Lennard-Jones chains with harmonic bonds have curves in
their phase diagram along which the dynamics and structure
are invariant. Using a method that is not dependent on the
validity of the isomorph theory, we also generate curves
of constant excess entropy (configurational adiabats). We
find that unlike isomorphs, curves of invariant dynamics do
not coincide with the configurational adiabats. We propose
the name “pseudoisomorphs” for curves that have invariant
dynamics and structure, but not constant excess entropy. Our
result has important consequences for the applicability of
Rosenfeld’s excess-entropy scaling, as we find that this scaling
does not work for Lennard-Jones chain liquids with harmonic
bonds.

The paper is structured as follows. In Sec. II, we briefly
review relevant aspects of the isomorph theory. We then

introduce the simulation method and the Lennard-Jones chain
model in Sec. III, where we also show how the different bond
types affect the dynamics and theUW correlations of the liquid.
We construct a configurational adiabat in Sec. IV and curves
of invariant dynamics in Sec. V and test to which degree these
curves resemble isomorphs. The findings are summarized in
Sec. VI.

II. THE ISOMORPH THEORY

The isomorph theory23 uses reduced units, making quan-
tities dimensionless using macroscopic quantities such as
temperature and pressure. Quantities in reduced units are
denoted by a tilde. Examples are the reduced distance r̃
= ρ1/3r , reduced energy Ũ = U/(kBT), and reduced time
t̃ = ρ1/3(kBT/ma)1/2t, with ma being the average particle mass.
Denoting a configuration as R = (r1, . . . ,rN), it is expressed
in reduced units as R̃ = ρ1/3R (which is equivalent to scaling
the configuration to unit density).

At two state points with densities ρ1 and ρ2, pairs of
configurations exist that have the same coordinates in reduced
units,

ρ1/3
1 R1 = ρ1/3

2 R2 ≡ R̃, (4)

i.e., they are scaled versions of each other. If the two state points
have temperature T1 and T2, they are defined to be isomorphic
if the Boltzmann factors of all pairs of scaled configurations
obey23

exp
(
−U(R1)

kBT1

)
= C12 exp

(
−U(R2)

kBT2

)
, (5)

with the same constant C12. In practice, this should hold to a
good approximation for all physically relevant configurations.

From this definition it follows that the structure of the
liquid is invariant in reduced units at isomorphic state points,
because the relative probabilities of configurations that are
scaled versions of each other are the same at both state points.
Another important consequence of Eq. (5) is that the excess
entropy Sex is the same at isomorphic state points.23

Taking the logarithm of Eq. (5) and expressing it in
reduced units, one finds that

Ũ(R1) = Ũ(R2) − ln(C1,2). (6)

In other words, the potential energy landscapes at the two
state points are simply scaled versions of each other. Defining
the reduced force as the gradient of the reduced potential
energy surface F̃ = −∇̃Ũ with ∇̃ = ρ−1/3∇, one finds that
the forces at two isomorphic state points are the same in
reduced units, F̃1 = F̃2, for configurations obeying Eq. (4).
A particle’s reduced mass is given by m̃i = mi/ma, where ma

is the average particle mass. Using this, Newton’s second law
in reduced units, m̃i ¨̃r = F̃i, leads to invariant dynamics when
expressed in reduced units.23

Isomorphs can be generated using the property of constant
excess entropy. This is done using the scaling exponent

γ =
⟨∆W∆U⟩
(∆U)2� . (7)
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Using the standard fluctuation formulae, it can be shown that
⟨∆W∆U⟩ / 
(∆U)2� = (∂ ⟨W ⟩ /∂T)V/(∂ ⟨U⟩ /∂T)V .11 This can
then be shown to be equal to the slope of a configurational
adiabat in the (log T, log ρ) using the configurational version
of the V − T Maxwell relation:23

γ =

(
∂ ln T
∂ ln ρ

)
Sex

. (8)

Equations (7) and (8) can be used to map out a configurational
adiabat for any system, using the fluctuations in U and W . In
practice, this is done by calculating γ from the fluctuations
using Eq. (7) and then calculating the temperature at another
state point with a slightly different density using Eq. (8).

For a more in-depth description of the isomorph theory,
the reader is referred to a recent feature article.41 It should also
be noted that the isomorph theory was recently generalized
by defining a Roskilde-simple system by the property that the
order of potential energies is maintained for uniform scaling of
configurations: U(Ra) < U(Rb)⇒ U(λRa) < U(λRb).42 For
the properties considered in this paper, the new formulation
of the theory leads to the same predictions as the original
formulation of the theory.

III. MODEL AND SIMULATION METHOD

A. Simulation method

We simulated the flexible Lennard-Jones chain (LJC)
model in the liquid phase. The chains consist of ten particles.
All but the bonded particle pairs in the chains interact through
the well-known Lennard-Jones potential

υ(r) = 4ε
( r
σ

)−12
−

( r
σ

)−6


(9)

cut and shifted at 2.5σ. The interaction between bonded
particle pairs is modeled by a harmonic spring

υ(r) = 0.5k(r − σ)2, (10)

with spring constant k = 3000ε/σ2. Note that the bond length
is the same as the distance at which the Lennard-Jones
energy is zero. The simulation time step was 0.0025, which
is sufficiently small for the large spring constant used. The
simulations were carried out in the NVT ensemble, keeping
the temperature fixed using a Nosé-Hoover thermostat. The
Nosé-Hoover thermostat is known to not sample a harmonic
potential correctly, but this does not affect the results for dense
systems like the liquids studied here.43

We employed a cubic bounding box with periodic bound-
ary conditions containing N = 2000 particles (200 chains).
The simulations were performed using the MD code RUMD,44

which is optimized for GPU computing.45 In some of the
figures below we compare our results to simulations of the
LJC with rigid bonds. Most of the latter data come from Paper
I, in which the details of the simulation of the rigid-bond chains
can be found.36

B. Background of the model

The Lennard-Jones chain was first simulated by Kremer
and Grest,46–48 who used it as a coarse-grained model to study
the properties of polymeric liquids. The particles in the chain
correspond to groups of atoms, like one or several CHn units
in an alkane, or one or several monomers in a polymer. For this
reason, the Lennard-Jones particles in the chain are referred to
as “segments.”

Starting at the end of the 1990s, extensive simulations
of the model have been done to investigate the behavior of
polymer melts around the glass transition.49–54 At that time,
the model had already undergone some changes compared to
the original version. The main difference was that the new
simulations did not cut and shift the potential at the minimum,
but also included the attractive part of the Lennard-Jones
potential.55 A second difference was that Grest and Kremer46

did not use molecular dynamics, but Langevin dynamics,
which includes a stochastic force similar to what is done when
simulating an implicit solvent.56

In the original version of the LJC model,46 as well as
in many later simulations where the attractive part of the LJ
potential is taken into account,49–54 bonds were modeled with
a finitely extensible nonlinear elastic (FENE) potential,

υ(r) = −0.5kr2
max ln


1 −

(
r

rmax

)2
. (11)

Here, rmax is the maximum length of the bond at which
the potential diverges. Since the FENE potential is purely
attractive, it is used in addition to the Lennard-Jones potential.
This is in contrast to the harmonic-bond chains used in this
work, where there is no Lennard-Jones interaction between
bonded particles. The combination of the FENE and the
Lennard-Jones potentials results in a potential minimum of
approximately 0.96σ.

Some more recent simulations of Lennard-Jones chains
have used harmonic bonds29,57–61 and rigid bonds.29,36,62 In
these studies, the bond length is always set to σ for both
the harmonic and the rigid bonds. In the case of harmonic
springs, the spring constant is always k = 3000ε/σ2, which
is rather stiff and leads to narrow bond length distributions.
Therefore, the stiff harmonic bonds and rigid bonds are often
considered to be equivalent, at least concerning the phase
diagram of the LJC.29,63 The phase diagram of the LJC model
with FENE bonds is not expected to be the same due to the
different bond lengths. Moreover, the shorter bond lengths
will have a significant effect on the molecular structure. We
therefore decided to investigate the effect of non-rigid bonds
by comparing our previous results for rigid bonds36 with new
simulations of the LJC model with harmonic bonds.

C. Effects of bond type

We compare the dynamics of the LJC models with
different bond types in Fig. 1, where we plot the intermediate
scattering function of the segments and the center of mass, as
well as the autocorrelation function of the end-to-end vector
⟨R(0)R(t)⟩. Figure 1(a) shows the dynamics at a standard dense
liquid state point. As mentioned earlier,29,63 the harmonic and
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FIG. 1. Comparison of the dynamics of the Lennard-Jones chain model with
rigid bonds (blue lines) and harmonic bonds (red dashed lines). The self-
intermediate scattering function FS(q, t) with q = 7.09 of the segments and
the center of mass and the autocorrelation function of the end-to-end vector
⟨R(0)R(t)⟩ are plotted. (a) At a standard density (ρ = 1.0), the harmonic
and rigid bonds give practically the same dynamics, while the LJC model
with FENE bonds (green dotted-dashed lines) has faster dynamics due to
the smaller bond length. (b) At higher density and temperature, the chains
with harmonic bonds have slightly faster dynamics than the chains with rigid
bonds. The two state points in (a) and (b) are isomorphic to one another for
the rigid-bond chains.36

rigid bonds give indistinguishable dynamics at this state point.
Nevertheless, at another state point with higher density and
temperature, the dynamics of the chains with harmonic and
rigid bonds start to differ, as shown in Fig. 1(b), so the two
models with different bond types cannot be considered to be
equivalent for all state points.

The two state points investigated in Figs. 1(a) and 1(b)
have been shown in Paper I36 to be isomorphic to each other
for the LJC liquid with rigid bonds, i.e., they have, to a very
good approximation, the same dynamics and (intermolecular)
structure. We also showed there that the isomorph in the phase
diagram was well described by the condition

h(ρ)
T
= Const., (12)

with h(ρ) = 2ρ5.06 − ρ2.61 determined by empirical scaling.36

The fact that the LJC model with harmonic bonds does not have
the same dynamics as the model with rigid bonds indicates one
of two things: either the model with harmonic bonds conforms
to the isomorph theory but with isomorphs described by a
different h(ρ), or the model with harmonic bonds does not
conform to the isomorph theory. Earlier it has been shown that
the LJC liquid with harmonic bonds obeys power-law density
scaling,29 which is a good approximation to isomorphic scaling
in small density ranges. Moreover, the model has also been
shown to obey Rosenfeld’s excess-entropy scaling,57,64 which
is in agreement with the isomorph theory. These facts indicate
that the LJC liquid with harmonic bonds could be described by
the isomorph theory, albeit with a h(ρ) that is slightly different
from the rigid bond chains. As we shall see, this is not the case,
although the model does have curves of invariant dynamics and
structure.

So far it seems like the bond type only has a small effect
on the behavior of the liquid. This is, however, not the case
when looking at a prominent property of R liquids. Figure 2
shows scatter plots of the fluctuations of the potential energy
U and the virial W for the three different bond types. It is
immediately apparent that the bond type has a big effect on the

FIG. 2. Scatter plots of the potential energy U and virial W equilibrium
fluctuations for the LJC model with different bond types. Where the rigid
bond simulations (a) have quite strongUW correlations, the use of harmonic
bonds (b) destroys the correlations. The FENE bonds (c) have a slightly
higher correlation coefficient than the harmonic bonds. For all three bond
types, the data were obtained at the state point ρ = 1.0, T = 0.7.

correlations of the these two quantities. For the rigid bonds it
was already shown in Paper I36 that the correlation coefficient
of the LJC liquid is R = 0.86 at the state point ρ = 1.0,T = 0.7.
Fig. 2(b) shows that if the same state point is simulated with
harmonic bonds, the correlations disappear almost completely
(R = 0.28), even though the dynamics do not change (see
Fig. 1(a)). We also show data for the FENE bonds in Fig. 2(c).
Here the correlations are stronger (R = 0.48) than in the system
with harmonic bonds, but still far from the value of the chains
with rigid bonds.

Both the strong UW correlations and the existence of
isomorphs in a liquid’s phase diagram are properties of an R
liquid, and it has been shown that UW correlations imply the
existence of isomorphs and vice versa.23 In view of this it is
puzzling that earlier investigations of the model with harmonic
bonds have shown that it obeys power-law density scaling,29

and Rosenfeld’s excess-entropy scaling57,64 indicating that it is
a simple liquid, while the strong UW correlations are absent,
indicating that it is not an R liquid.

IV. DYNAMICS AND STRUCTURE
ALONG A CONFIGURATIONAL ADIABAT

Isomorphs are often created by keeping excess entropy
constant (see Sec. II), and we create a configurational adiabat
using the same method. We circumvent the time-consuming
calculation of the excess entropy by using Eq. (8) to keep
Sex constant (without knowing its value). We do this by
performing an initial equilibrium simulation at the state point
(ρ1,T1) = (1.0,0.7). γ is then calculated from the fluctuations
in U and W using Eq. (7). Note that this is possible even if the
liquid does not obey the isomorph theory, and the fluctuations
in U and W are not correlated.11,23 We choose a density ρ2 for
the new state point, which is close to the density of the initial
state point. It is then possible to calculate the temperature T2 at
this new density for which the excess entropy is identical to the
first state point, by rewriting Eq. (8) to T2 = T1(ρ2/ρ1)γ. The
procedure is repeated several times by doing an equilibrium
simulation at the new state point to calculate a new value of
γ and find a new state point on the adiabat. It is important to
choose the change in density |ρ2 − ρ1| small enough because γ
may change with density. This can be verified by making sure
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FIG. 3. Dynamics at four state points with the same excess entropy, as a
function of reduced time. (a) The mean square displacement of the segments
and the center of mass of the chain. (b) The segmental and center-of-mass
incoherent intermediate scattering function FS(q, t̃) and the autocorrelation
of the end-to-end vector ⟨R(0)R(t)⟩. The length of the scattering vector was
kept constant in reduced units as q = q̃ρ1/3 with q̃ = 7.09 approximately at
the main peak of the static structure factor. (c) The autocorrelation functions
of the first and the fifth Rouse modes. All these dynamical quantities differ at
the four state points, showing that for the LJC model with harmonic bonds,
the dynamics are not a function of the excess entropy alone.

that a further decrease of this density difference does not have
a significant effect on the result. Here, the change in density
was 0.02, and we obtained a set of state points with densities
ranging from 0.96 to 1.08.

For R liquids, a configurational adiabat is an isomorph,
and therefore the dynamics are invariant along a configura-
tional adiabat when plotted in reduced units. We test this in
Fig. 3 where we plot various dynamical quantities of the har-
monic bond LJC model for state points on the configurational
adiabat. The figure contains (a) mean square displacements,
(b) incoherent intermediate scattering functions FS(q, t) and
autocorrelation functions of the end-to-end vector ⟨R(0)R(t)⟩,
and (c) Rouse-mode autocorrelation functions



Xp(0)Xp(t)�

for p = 1,5. All these quantities, which probe the segmental
dynamics of the individual LJ particles, as well as the chain dy-
namics, are clearly changing along the configurational adiabat.

The isomorph theory predicts that the structure of
the liquid is invariant along a configurational adiabat. For
completeness, we also test this with the radial distribution
functions plotted in Fig. 4. The radial distribution functions
are split in the intermolecular contributions of particle pairs
in different molecules and intramolecular contributions from
pairs in the same molecule. The reason is that we have
previously shown that only the intermolecular contribution is
invariant on the isomorph for the LJC model with rigid bonds.36

For the chains with harmonic bonds, we find qualitatively the

FIG. 4. The radial distribution function g (r̃ ) along the configurational adia-
bat in reduced units. We split the total (segmental) g (r̃ ) into (a) intermolecular
contributions and (b) intramolecular contributions. For the intermolecular
g (r̃ ) there is a reasonable collapse, but for the intramolecular g (r̃ ) there are
clear differences, especially around the bond length.

same results on the configurational adiabat; the average bond
length does not scale with density and is therefore not invariant
in reduced units. The intramolecular structure is thus not the
same at different densities. The intermolecular structure is
reasonably invariant, since the first peak is exactly at the same
position for the tested densities. However, it should be noted
that the height of the first peak of g(r) changes more than what
was found for the LJC with rigid bonds on the isomorph.36

From the results presented so far we conclude that the LJC
model with harmonic bonds does not obey the isomorph theory
or Rosenfeld’s excess-entropy scaling, because the dynamics
are not invariant on a curve of constant excess entropy. This
is in disagreement with previous results that have shown that
the LJC with flexible bonds does obey Rosenfeld’s excess-
entropy scaling.57,64 The reason for this discrepancy is the way
that the excess entropy is calculated. The excess entropy can
be approximated in different ways, the most exact of which is
thermodynamic integration. The simplest approximation is the
pair entropy S2 which can easily be calculated from the radial
distribution function, but in this case the bonded particle pairs
are excluded in the calculation of the g(r). A third method
that is commonly used employs an equation of state developed
using self-associating fluid theory.63 Voyiatzis et al.64 have
compared the effect of the different entropy approximations
on the applicability of Rosenfeld’s excess-entropy scaling
of Lennard-Jones chains with harmonic bonds. They found
that the scaling works best when S2 is used, ignoring the
bonded particle pairs. If the bonded particle pairs were not
removed in the calculation of the entropy, as is the case in the
thermodynamic integration, the transport coefficients could
not be collapsed on a single curve. Our method of identifying
isomorphs using Eqs. (7) and (8) avoids these problems.

V. IDENTIFICATION OF A PSEUDOISOMORPH

Galliero et al.29 have shown that reduced viscosities of the
LJC model with harmonic bonds can be scaled approximately
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onto a single curve that is a function of h(ρ) = ργ/T . This may
seem surprising given our previously mentioned result that
power-law density scaling does not work for the LJC model,
but in Ref. 29 the collapse is not perfect, and the extent of
the densities investigated is not mentioned. Nevertheless, the
results of Galliero et al. indicate that a curve exists which is
similar to an isomorph, along which dynamics and structure
are invariant.

For an R liquid, the curve in the phase diagram described
by h(ρ) is called an isomorph. Moreover, not only the reduced
viscosity, but all dynamical measures, the structure in reduced
units, and the excess entropy are constant on this curve. In
this section, we construct a curve of invariant dynamics and
test to what degree it has the properties of an isomorph.
Since we have shown in Sec. IV that it cannot be a proper
isomorph because the excess entropy is not constant, we
call this curve of invariant dynamics a pseudoisomorph. We
construct the pseudoisomorph by empirical density scaling
of the segmental relaxation times, but unlike Ref. 29 do not
make any assumption about the functional form of the scaling
function h(ρ).

Relaxation times were determined from the incoherent
intermediate scattering function of the segments and the center
of mass and from the correlation function of the end-to-
end vector. We defined the relaxation time as the time after
which the normalized correlation function has decayed to
0.2. Unscaled reduced relaxation times of the segmental FS

and the end-to-end vector are shown in Fig. 5(a) for five
isochores with densities ranging from ρ = 0.95 to ρ = 1.16.
It was not possible to go to higher relaxation times (lower
temperatures) due to crystallization at higher densities and
phase separation or negative pressures at lower densities.
Nevertheless a fairly large range of temperatures could be
reached for some densities.

FIG. 5. Empirical density scaling of the (reduced) relaxation time for the
harmonic bond chains. On the left the unscaled data from the segmental in-
coherent intermediate scattering function FS(q, t̃) (q = 7.09ρ(1/3)) and the
autocorrelation of the end-to-end vector ⟨R(0)R(t)⟩ are shown for different
isochores. On the right, the segmental relaxation data have been scaled by
hand to obtain h(ρ), and two other measures of relaxation times have been
scaled by the same factor.

With standard power-law density scaling, a function
h(ρ) = ργs/T is found which collapses the isochoric data when
plotted versus ργs, where γs is a material-specific constant.
Instead, we scale each isochore to collapse the segmental
relaxation times onto the ρ = 1.00 isochore. Thus for each
isochore, a scalar h was chosen by hand to collapse the
segmental relaxation times as functions of h/T . The value of
the scaling parameter h was found independently for each
isochore from the segmental relaxation times. The results
of the scaling in Fig. 5(b) show a good collapse for all
three measures of the relaxation time, even though only the
segmental relaxation times were used in the scaling procedure.
It was found earlier with power-law density scaling that both
the segmental and chain dynamics follow the same scaling,65,66

and this has also been confirmed for an all-atom polymer
model.67

The values for h(ρ) that were obtained from the scaling
are plotted in Fig. 6 (blue crosses). The data for the harmonic
springs are compared with the fit of h(ρ) for the rigid bond
chains (black dashed line) from Paper I.36 There is a small
but significant difference in the shapes of h(ρ) for the two
models. The difference is most obvious at high density, where
the harmonic bond h(ρ) is lower than the rigid bond h(ρ). This
is in agreement with the data in Fig. 1(b), which show that the
dynamics of the chains with harmonic bonds are faster at high
density. To keep the dynamics invariant on a pseudoisomorph,
the temperature on the isomorph of the harmonic bond chain
should be lower at high densities than for the isomorph of the
LJC with rigid bonds. Recall that on an isomorph, T ∝ h(ρ)
(see Eq. (12)), so also h(ρ) should be lower for the harmonic
bond chains. As in the previous paper, we have fitted the data to
a function of the form h(ρ) = 2ρα − ρβ. The resulting function
h(ρ) = 2ρ4.32 − ρ1.07 is shown as the dashed orange line.

FIG. 6. The values of the harmonic bond h(ρ) obtained by empirical scaling
(blue crosses) compared to the rigid bond h(ρ) (black dashed line). The data
for the harmonic bond chains have been fitted to obtain h(ρ)= 2ρ4.32−ρ1.07

(orange dashed line). We included the shape of the configurational adiabat
(red crosses) by plotting the temperature at each density divided by the
temperature at ρ = 1. The green dots show a curve of constant γ = 7.57. The
inset shows the same but in a log-log plot, where a constant γ leads to a
straight line.
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The inset of Fig. 6 shows the same data in a log-log plot. A
power-law h(ρ) = ργ corresponds to a straight line in this plot
(green dots). Our data show that this is not a good description
of the data, which means that power-law density scaling is an
approximation that only works for the smaller density changes
(5%), confirming previous findings of ours.28

For liquids that obey the isomorph theory, h(ρ) describes
the shape of configurational adiabats. From Eq. (8) it then
follows that γ as calculated from the fluctuations (from now
on denoted by γ f ) is the same as the logarithmic derivative of
h(ρ).68 For a pseudoisomorph this may not hold, since h(ρ)
does not describe a configurational adiabat. It is however still
possible to calculate the logarithmic derivative of h(ρ) for the
pseudoisomorph as

γh(ρ) = d ln h(ρ)
d ln ρ

, γ f . (13)

The result of this is plotted in Fig. 7 (orange dashed line). Our
values are consistent with the value γ ≈ 6.5 that Galliero et al.
found using power-law density scaling. Comparing γh(ρ) of
the harmonic bonds with γh(ρ) for rigid bonds (dashed black
line), we see that γ has a similar magnitude, but a stronger
density dependence for the chains with harmonic bonds. For
rigid bonds, γh(ρ) and γ f are identical. In contrast, the chains
with harmonic bonds, using Eq. (7) to calculate γ f from the
fluctuations (orange crosses), give γ f values that are much
lower than the γ(ρ) from the fitted h(ρ). This confirms that the
pseudoisomorph is not a configurational adiabat.

After having established that the pseudoisomorph is
not a configurational adiabat, we test to which degree the
former has other isomorph invariants. We obtain a set of
pseudoisomorphic state points from the fitted expression of
h(ρ) using T = T0(2ρ4.32 − ρ1.07) (Eq. (13)), with T0 = 0.7 the
temperature at ρ = 1. We use densities from 0.96 to 1.20,
creating a pseudoisomorph along which the density changes
by 25%.

In Fig. 8, we plot different dynamical quantities in reduced
units at the pseudoisomorphic state points. These include
the segmental and center-of-mass mean square displacements
and incoherent intermediate scattering functions, and chain
specific quantities like the orientational autocorrelation of the
end-to-end vector and Rouse-mode autocorrelation functions.

FIG. 7. γh(ρ) for the harmonic bond chains (orange dashed line) calculated
from the h(ρ) fit in Fig. 6. This is compared to the rigid bond γh(ρ) (black
dashed line) calculated from h(ρ) and the rigid bond γ values calculated from
the UW fluctuations (Eq. (7)). For harmonic bonds, the γ f values calculated
from the fluctuations (orange crosses) are significantly lower. These have
been calculated at state points on the configurational adiabat.

FIG. 8. The dynamics at the pseudoisomorphic state points. The pseudo-
isomorphic state points were chosen to have the same relaxation time of the
segmental incoherent intermediate scattering function (procedure described
in text). (a) The mean square displacement of the segments (solid lines)
and the centers of mass (dashed lines). (b) The incoherent intermediate
scattering function Fs(q, t) of the segments and the centers of mass, and the
autocorrelation function of the end-to-end vector ⟨R(0)R(t)⟩. (c) Some of
the autocorrelation functions of the Rouse modes



Xp(0)Xp(t)� in reduced

units for pseudoisomorphic state points. The collapse is good for the lower
modes, but for the higher modes some deviation is seen. The dynamics are
invariant on the pseudoisomorph, while they are not at the configurational
adiabat (Fig. 3).

By definition, the relaxation times of the segmental interme-
diate scattering function are invariant on the pseudoisomorph.
The data show that the entire shape of the relaxation functions
is the same for all quantities. There is only a slight deviation
at the high Rouse modes, which corresponds to movements
in short subchains. This is identical to what was found in
Paper I for chains with rigid bonds.36 The lower Rouse modes
correspond to larger (sub)chains, and these are as invariant as
the other quantities in the figure. All correlation functions are
found to be much more invariant on the pseudoisomorph than
on the configurational adiabat (Fig. 3).

Next, we investigate whether the structure of the liquid
is also invariant on the pseudoisomorph. We plot the radial
distribution functions of the pseudoisomorphic state points in
Fig. 9. As in Fig. 4 the radial distribution function is split
into an intermolecular contribution (a) and an intramolecular
contribution (b). As for the rigid-bond isomorphs (Paper I36),
we find that the intermolecular structure is invariant on the
pseudoisomorph, while the intramolecular structure is not.
The main reason for this is the bonded particle pairs in the
molecule.

From Fig. 9(b) it is clear that the behavior of the bonds
is complicated and varies on the pseudoisomorph, so we now
investigate this further. For the LJC model with rigid bonds,
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FIG. 9. Radial distribution functions g (r ) in reduced units on the pseudo-
isomorph. (a) The intermolecular g (r ) is invariant on the pseudoisomorph.
(b) The intramolecular g (r ) is not invariant. This is mainly due to the bonded
particle pairs, but there are also significant differences at larger distances. The
structure is more invariant on the pseudoisomorph than on the configurational
adiabat (Fig. 4).

the bonds cannot follow the scaling, because their lengths are
kept constant in normal units, meaning that they change in
reduced units. Nevertheless, their behavior on the isomorph
was rather trivial; they show up as delta functions in the
g(r).36 Fig. 10(a) shows that for the harmonic bonds, also
the width of the distribution changes on the pseudoisomorph.
The bond length distributions on the isochore and isotherm
(Figs. 10(b) and 10(c)) show that the width only depends on
temperature, as expected from the equipartition theorem. The
average bond length changes slightly on the pseudoisomorph,
but not enough to be invariant in reduced units. The fact that at
high temperatures the chains with harmonic bonds have faster
dynamics than the chains with rigid bonds (see Fig. 1(b)) may
be related to the wider bond length distribution, making it
easier for the segments and the chain to cross barriers.

We plot two measures of the molecular size in Fig. 11:
the mean square end-to-end vector ⟨R2⟩ and the mean square
radius of gyration ⟨R2

g⟩, both in reduced units. The size of
the chains is not invariant on the pseudoisomorph, and the
molecular sizes seem to depend only on density, since it is

FIG. 10. Bond-length distributions along the pseudoisomorph, an isochore,
and an isotherm. The width of the bond-length distribution changes along the
pseudoisomorph and isochore but is constant on an isotherm (equipartition).
The average bond length changes slightly on the pseudoisomorph. Note that,
in this figure, the bond length is not given in reduced units.

FIG. 11. The mean square end-to-end vector ⟨R2⟩ and mean square radius
of gyration ⟨R2

g ⟩ on the pseudoisomorph, compared to the isotherm and
isochore. These measures of the molecule size seem only dependent on
density and are not invariant on the pseudoisomorph.

almost constant on the isochores. The data are very similar
to those found for rigid bonds.36 It seems that the effect of
temperature is slightly larger for the harmonic bonds, which
we attribute to the temperature dependence of the bond length
distributions.

VI. DISCUSSION AND OUTLOOK

Our analysis of the structure and dynamics shows that
the LJC model with harmonic bonds has pseudoisomorphs,
which are very similar to the isomorphs of the LJC model with
rigid bonds. Dynamics and structure are invariant on these
curves, except when very local intramolecular contributions
are considered, such as the higher Rouse modes and the
separation between nearest and next-nearest neighbors. The
pseudoisomorphs of the chains with harmonic bonds have a
different shape from the isomorphs of the chains with rigid
bonds, especially at high densities and temperatures. This
difference is presumably caused by the wider bond length
distributions for flexible bonds at high temperatures.

The main differences between the pseudoisomorphs in
this paper and the isomorphs in Paper I36 are related to
the fluctuations in the energy and the pressure. The UW
correlations are weak, and γ as calculated from the UW
fluctuations does not agree with the logarithmic slope of
the pseudoisomorph in the ρ,T phase diagram. Therefore the
excess entropy is not constant on the pseudoisomorph. The LJC
liquid with harmonic bonds does, thus, not obey the isomorph
theory, even though the same model with rigid bonds does and
has similar dynamics and structure.

This also means that the liquid with harmonic bonds
does not obey Rosenfeld’s excess-entropy scaling when the
bonds are flexible, i.e., the excess entropy does not control
the relaxation time. This is in disagreement with earlier
results, where the chains with harmonic bonds have been
shown to obey Rosenfeld’s excess-entropy scaling.57,64 The
disagreement of these previous results with our conclusion
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may be ascribed to the fact that the collapse of the data was
not exact in these previous studies. Moreover, Voyiatzis et al.
have shown that excess entropy scaling works best when the
entropy is approximated by the pair entropy S2 and the bonded
particle pairs are ignored.64 We conclude that the flexible bonds
contribute to the entropy of the system, but this contribution is
not related to the (long-time) dynamics of the system.

The pseudoisomorphs in this article have been identified
using empirical scaling. This is inferior to real isomorphs
which can be constructed using Eqs. (7) and (8). It would
be desirable to be able to find the pseudoisomorphs without
reverting to empirical scaling, and work is in progress with
this aim.
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