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I. LIQUIDS

Data for the following three liquids are used for
the analysis in Figs. 1-4 of the paper: tetramethyl-
tetrahpenyl-trisiloxane (DC704), 5-polyphenyl-4-ether
(5PPE), tripropylene glycol (TPG). In this supplemen-
tary we also include data for triphenyl phosphite (TPP),
dibutyl phthalate (DBP), diethyl phthalate (DEP), and
2,3-epoxy propyl-phenyl-ether (2,3-epoxy). A summary
of relevant information about the liquids can be found
in Table I.

All data can be found at the “Glass & Time” data
repository

http://glass.ruc.dk/data/

II. METHODS

The setup, including a custombuilt cryostat, cus-
tombuilt voltage generator, commercial measuring elec-
tronics, and the prototype subcryostat (microregulator),
is described in detail in Ref. 3 dealing with the cryostat
and Ref. 4 dealing with the electronics.

The measurements of the dielectric constant used
for monitoring the low-frequency dielectric loss, high-
frequency dielectric constant (ε∞), and the scans of the
beta loss peak are fairly standard, except for an added
Peltier element in direct contact with the measuring cell
acting as a sub-cryostat [4]. This extra temperature con-
trol makes it possible both to make very fast tempera-
ture jumps and to keep the temperature stable within
milliKelvin over weeks or as long as required.

Figure 1 below shows data examples of the measure-
ment types used.

A. Mechanical resonance frequency

The mechanical resonance measurements use the
Piezo-electric Shear Gauge (PSG) [5] in a one-disc ver-
sion. This setup is in thermal contact with the microreg-
ulator for precise temperature control and the possi-
bility of fast temperature changes. For these measure-
ments there are two liquid layer (one on each side of
the piezo-electric ceramic disc). The layers are approxi-
mately 0.5 mm thick. This makes the characteristic ther-
mal equilibration time somewhat longer than the dielec-

tric counterpart (around 10 s). This method was used
already in Ref. 6.

The measured mechanical resonance frequency, fres,
of the piezo disc is related to the shear modulus, G∞, of
the liquid (assuming that there are no significant shear
relaxations above ω0) by

G∞ = ρdh
(

f 2
res − F2

res

)
/(2π)2 (1)

where ρ is the density of the piezoceramic, d is the thick-
ness of the liquid layer, h is the thickness of the piezo-
ceramic disc, and Fres is the resonance frequency of the
empty axially clamped disc [6, 7].

In Fig. 1(a) the resonance frequency is the peak in
the imaginary part of the measured capacitance. Below
we demonstrate how this resonance frequency is deter-
mined in the aging measurements.

A series of isothermal scans during aging of the me-
chanical resonance of the piezo disc monitored via its
electrical frequency-dependent capacitance are shown
in Fig. 2(a) for four different temperatures close to and
below the glass transition temperature (Tg ≈ 245 K in
this example, 5PPE). The resonance moves up in fre-
quency over time as the sample equilibrates at the new
(lower) temperature because the liquid shear modulus
increases. In Fig. 2(b) the resonance frequency deter-
mined from the spectra is plotted as a function of time,
showing clearly that with lower temperature, the equi-
libration takes longer and longer time.

A full frequency scan takes 13 minutes. For a sample
that ages a data acquisition time as short as possible is
preferred. The data presented in the paper are based on
an algorithm for which it is only necessary to measure
at two frequencies. This greatly reduces the scanning
time and makes it possible to monitor even quite rapid
changes. The method used for calculating the reson-
nance frequency is based on the derivation given below,
which makes use of the fact that the electrical impedance
is zero at the resonance frequency. In the course of a
measurement, the two frequencies monitored were ad-
justed to stay close to the resonance.

A simple resonance can be described by an LCR cir-
cuit, a series connection an inductor (L), a capacitor (C),
and a resistor (R). The measured frequency-dependent
(complex) capacitance J of this is given by

J =
1

1
C + iωR−ω2L

(2)
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FIG. 1. Examples of the different types of data used, (a) mechanical resonance, (b) logarithm of the dielectric loss, (c) real part of
the dielectric constant, and (d) logarithm of the loss-peak frequency of the (dielectric) beta relaxation. Grey dashed lines in (b,c,d)
indicate the quantity being monitored during aging. In (a) it is the resonance frequency given by the peak frequency of imaginary
part of the capacitance (the method used for determining this frequency is described in the text). The insets show this quantity as
a function of temperature, in which the grey area indicates the range of temperatures involved in the aging measurements. The
black circles show the equilibrium values of the measured quantity after annealing. For the two dielectric quantities (b and c), the
aging points continue the equilibrium values measured above Tg. For the mechanical resonance (a), the aging points are shifted
towards lower frequencies because the equilibrium scans are from a different set of measurements, and the resonance frequency
varies with the degree of filling and the specific piezo-electric disc used. When these aging data points are shifted (arrow in the
inset of (a)), they too continue on the line from the equilibrium measurements.
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Liquid Tg (K) T0 (K) ∆T (K) Probe X0 ∆Xup/∆Xdown |a|* Ref.

DC704 210 207 1.5 fres/kHz (mech.) 361.4 1.292/-1.438 261 this work

TPP 203 198.3 0.6 fres/kHz (mech.) 464.6 0.9755/-0.9837 130 this work

DC704 210 208.5 1.5 ε′(10 kHz) 4.1553 6.157/-6.457 (×10−3) 875 this work

5PPE 245 242 2.0 log [ε′′(1 Hz)] -1.89 -0.215/0.277 8.5 1

TPP 203 200 2.0 log [ε′′(1 Hz)] -1.95 -0.373/0.453 9.5 1

DEP 185 183 1.0 log [ε′′(1Hz)] -0.686 -0.153/0.167 4.4 1

2,3-epoxy 190 188 2.0 log [ε′′(0.37Hz)] -1.158 -0.373/0.412 6.0 1

DBP 177 176 1.0 log [ε′′(0.18 Hz)] -0.749 -0.212/0.206 3.8 1

TPG 189 183 2.0 log
[

fβ,max/Hz
]

(diel.) 4.009 3.4/-5.3 (×10−2) 47 2

*) determined from Eq. (9)

TABLE I. Overview of all liquids studied.

where ω is the angular frequency. This may be rewritten
as

J =
C

1 + i ω
ω0

1
Q −

(
ω
ω0

)2 (3)

where ω0 = 1√
LC

is the angular resonance frequency,

and Q = 1
R

√
L
C is the standard resonance quality factor.

If there is a sharp resonance (Q� 1), J is approximately
given by

J ≈ C

1−
(

ω
ω0

)2 (4)

which gives the purely imaginary impedance

Z =
1

iω J
≈ 1

iωC

(
1−

(
ω

ω0

)2
)

. (5)

This expression implies that the impedance is zero at the
resonance frequency, Z(ω = ω0) = 0.

Measuring at two frequencies close to the resonance,
(ω1, J1) and (ω, J2), we can determine the resonance fre-
quency ω0 precisely by the following relation based on
Eq. (5)

ω0 =

√
ω2

2 − Aω2
1

1− A
, A =

Z′′2 ω2

Z′′1 ω1
(6)

from which the resonance frequency is given as fres =
ω0/2π.

In Fig. 3 the principle is demonstrated in the case of
DC704. The figure shows the two measured frequen-
cies (blue and pink lines) and the inferred resonance fre-
quency, fres (black dots). The figure demonstrates the
high resolution of this measurement.

B. Low-frequency dielectric loss, ε′′(1 Hz)

These data were published in Ref. 1 and have been re-
analyzed here. The measurements were carried out with
a two-disc capacitor in contact with a Peltier element.
The concept is described in detail in Ref. 3. The liquid
layer is 50 µm thick and the use of a Peltier element min-
imizes heat diffusion lengths outside of the liquid layer.
This geometry and the thin liquid layer minimize the
characteristic thermal equilibration time when changing
temperature to a mere two seconds. The set temperature
may be kept constant over weeks within 100 µK.

Aging was studied by monitoring the dielectric loss
at a fixed frequency as a function of time following a
temperature jump. The monitoring frequency f is much
larger than the loss-peak frequency, but f must be suffi-
ciently below any contributions from potential beta pro-
cesses. These constraints vary with the liquid and the
selected temperature range, and the choice of f was op-
timized for each liquid [1].

C. High-frequency dielectric constant, ε′(10 kHz)

The high-frequency dielectric measurements were
performed under same conditions and with the same
type of cell as the low-frequency dielectric loss de-
scribed above, except that the monitoring frequency in
this case was 10 kHz.
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FIG. 2. (a) Series of frequency scans across the resonance for
four temperatures (data for 5PPE). As the temperature is de-
creased, the liquid stiffens and gets harder, and the resonance
moves to higher frequencies. In (b) the resonance frequency
found from data in (a) is plotted as a function of time. At the
highest temperature (246 K), the curve is flat, reflecting that the
sample is in equilibrium almost immediately. With lower tem-
peratures equilibration takes progressively longer time. At the
lowest temperature (240 K) equilibrium is not reached in this
measurement.

D. Beta loss-peak frequency aging, fβ,max

The beta loss-peak frequency aging data were pub-
lished in Ref. [2], but not reported as functions of time
because that publication focussed on the relation during
aging between the beta loss-peak frequency and max-
imum loss. These are the only data of the paper that
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FIG. 3. Example of how the resonance frequency is determined
from two measured points. The two measured frequencies are
shown in pink and blue and the inferred resonance frequency
(see Eq. (6)) in black circles. The inset shows a zoom of the full
curve. Even if the two measured frequencies have some jit-
ter, the calculated resonance frequency follows a smooth curve
with nearly no noise.

do not utilize the fast and accurate sub-cryostat with
the Peltier element. The monitored property is the peak
position of the beta relaxation, so each point on the ag-
ing curve requires a full frequency scan of the beta peak
region. Thus, both the scanning time and the thermal
equilibration time are much longer than in the other
measurements. Consequently, to make it possible to ap-
proximate a complete temperature jump, the annealing
temperature for this sample is further below Tg (and the
time to reach structural equilibrium longer) than for the
other data sets. Thus these aging data are 6 K below the
glass transition temperature, whereas the other sets are
2-3 K below.

The peak position was determined as the top point of
a second order polynomium fitted to 9 data highest data
points in the beta region, involving a frequency range of
0.5 decades.

The protocol for the measurement is jumping in steps
of 2 K from 185 K to 181 K and back up in temperature.
For the lowest temperature the sample was not fully
equilibrated before the temperature was raised again.
To properly estimate the equilibrium values necessary
for the analysis and tests of the theory, we invoked time-
aging time superposition as well as time-temperature
superposition, making it possible to build the full relax-
ation curve from the different pieces at different temper-
atures. Thus the data of the paper are based on the 185 K
to 183 K down jump and the 183 K to 185 K up jump.

For shifting on the time axes, we used the extrapola-
tions of the equilibrium relaxation rate shown in Fig. 4,
assuming that the structural equilibration time is pro-
portional to the dielectric relaxation time given as the
inverse alpha loss-peak frequency. Then the curve was
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FIG. 4. (a) Dielectric relaxation spectra of TPG with the al-
pha peak position marked by a red cross measured at tem-
peratures much above those where aging was studied (181-
185 K). (b) Peak positions as a function of temperature. The
black dashed line represents a VFT extrapolation of the peak
frequency down to the annealing temperatures of the aging
experiment. The annealing temperatures are marked by grey
horizontal lines; the intersection of the VFT extrapolation and
these lines gives the predicted/extrapolated equilibrium relax-
ation rates at the annealing temperatures.

shifted of the y-axes to get the best overlap with the re-
laxation measured at that temperature. Measured and
shifted curves are shown in Fig. 5. Measured data
points are plotted with asterices, while shifted curves
are plotted with dots in the same color as the original
data points.

III. THE a PARAMETERS

For the tests of the two predictions of the single-
parameter theory given in Figs. 3 and 4 of the paper
the constant a for each sample needs to be determined.
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FIG. 5. Left: Logarithm of the beta loss-peak frequency of TPG
as a function of time for the three temperature down jumps.
The measured aging curves are plotted with asterices, shifted
(see text) curves with dots in the same color as the original
data points. Note that the instantaneous change in the beta
loss-peak frequency is in the opposite direction compared to
the subsequent aging.

Prediction 1:

ln
(
− Ṙ

γeq

)
− a

∆X(0)
X0

R = ln (F(R)) (7)

Prediction 2:

t2(R) =
∫ t2(R)

0
dt2 =

∫ t1(R)

0
exp (Λ12R(t1)) dt1 (8)

where Λ12 = a(∆X1(0)− ∆X2(0))/Xeq.
In principle, a could be treated as a free parameter. Be-

low we present two alternative methods for determin-
ing a from data, leaving zero parameters of the theory.
The first one is described in Sec. III A and is used in the
paper; the second one involves some extra assumptions,
see Sec. III B below.

A. Determining a from aging data

In the paper we determine a empirically from the re-
lation∫ ∞

0

(
eΛ12R1(t1) − 1

)
dt1 +

∫ ∞

0

(
e−Λ12R2(t2) − 1

)
dt2 = 0

(9)
regarding this relation as one equation with one un-
known, a.

In practice this implies numerical integration of the
normalized aging data curves and minimizing the dif-
ference between the two integrals by tweaking a. Since
data rarely extend to infinity, we use the relation with a
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common cut-off in the relaxation function R∫ t1(R)

0

(
eΛ12R1(t1) − 1

)
dt1

+
∫ t2(R)

0

(
e−Λ12R2(t2) − 1

)
dt2 = 0 .

(10)

We note that the above relation is not an approximation
and that Eq. (9) is simply the limit of this for R→ 0.

For all liquids except TPG this cut-off was 1 %, i.e.
R = 0.01. For the TPG data the cut-off was set higher,
6.67 %.

The constant a was found to vary by orders of magni-
tude with the measurement type (Fig. 7).

B. Estimation of aextrapolated

In principle, a can be found by equilibrium measure-
ments by invoking the chain rule

a =
d ln γeq

d ln Xeq
=

d ln γeq

d ln T

/
d ln Xeq

d ln T
. (11)

The quantity d ln Xeq/d ln T can be calculated directly
from the aging measurements since Xeq = limt→∞ X(t).
For a set of an up jump and a down jump to the same
temperature we have both Xeq and ∆X, which gives
three equilibrium values of X at three temperatures.

The other quantity, d ln γeq/d ln T (closely related to
the fragility), is not readily obtainable from the aging
measurements, because it requires knowledge of the
equilibrium clock rate γeq at temperatures below Tg,
which is not measured directly. If one assumes that the
equilibrium clock rate is proportional to the equilibrium
dielectric relaxation rate determined as the alpha loss-
peak frequency, fmax, (an assumption rendered probable
in Refs. 1 and 10), dielectric data can be used to deter-
mine d ln γeq/d ln T above Tg and subsequencly extrap-
olated to lower temperatures.

This procedure is implemented in Fig. 6 where the
temperature dependence of the alpha loss-peak fre-
quency fmax of the dielectric loss and the calculated
d ln fmax/d ln T is shown for all the liquids studied.
The latter increases with decreasing temperature [8]
approaching 150 − 220 around Tg. Note that here
we did not use a VFT extrapolation for the relaxation
rate. Instead, we extrapolated the calculated quantity
d ln γeq/d ln T, as we believe this method is more likely
to give reasonable extrapolations [8].

Figure 7 shows the obtained a-values from extrapola-
tion as a function of the a values found from extrapo-
lation. In general, the two methods give almost perfect
correlation. The slight deviations reflect either that the
dielectric relaxation time is not always identical to the
material time or simply the challenge of extrapolating
from higher temperatures.
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FIG. 6. (a) Relaxation map of the dielectric loss peaks (γeq)
for the liquids used in this work. Data are from [1, 8–10]. (b)
The logarithmic derivatives of the relaxation frequencies. The
dashed lines represent the extrapolations, the crosses mark the
aging temperatures.

IV. TESTING PREDICTIONS 1 AND 2 FOR OTHER
DATA

Figure 8 shows the two predictions (Eq. (7) and (8))
for the data not included in the paper.

Prediction 1 works well for all liquids and measure-
ment types. Prediction 2 predicts curves that show some
deviations from the data at the short times for the di-
electric loss, whereas the mechanical resonance gives a
perfect overlap. This is difficult to see on the full curve
because the temperature jump is small (∆T = 0.6 K), but
the inset shows the overlap when zooming in on part of
the curve. The deviations for the dielectric loss data is
worse for those liquids that have a strong beta process.
These deviations may thus be due to interference from
the beta process.
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FIG. 7. Comparison of the a value determined from data via
Eq. (9) and that estimated via Eq. (11) by extrapolation of the
equilibrium dielectric relaxation rates. The numerical value
of a varies greatly with the type of measurement: for the di-
electric loss data a ∼ 101, for the mechanical resonance and
beta loss-peak data a ∼ 102, while for the high-frequency di-
electric real part data a ∼ 103. All low-frequency dielectric
loss data of Ref. [1] are included here, as well as an extra set
of mechanical resonance data (for TPP). There is good agree-
ment between the estimated a values from extrapolation and
those determined from the aging data. Deviations either re-
flect that the dielectric relaxation time is not always identical
to the material time or simply the challenge of extrapolating
from higher temperatures.

V. COMMENTS ON EQUATION (7)

Equation (7) of the main paper is a non-linear differ-
ential equation for the normalized relaxation function R

Ṙ = − γeq F(R) exp
(

a
∆X(0)

Xeq
R
)

. (12)

We note the following:

1. In the limit ∆T → 0 Eq. (12) becomes Ṙ =
−γeqF(R). This describes a small temperature
jump for which aging is a linear-response phe-
nomenon and the material time reduces to ordi-
nary time. This differential equation determines
the convolution kernel M(ξ) of the general aging
equation (Eq. (2) of the main paper). Thus, lin-
ear aging determines the general, nonlinear aging
[11, 12].

2. In the long-time limit R(t) → 0, Ṙ(t) → 0, and
γ(t) → γeq. Equation (12) here also reduces to
the linear-limit aging equation, Ṙ = −γeqF(R).

Clearly, F(R) → 0 for R → 0. The generic ana-
lytic case is F(R) = CR for R → 0. This leads
to a simple exponential relaxation in the long-time
limit, a property for which there is some exper-
imental evidence [1]. The stretched-exponential
relaxation function R(ξ) = exp(−ξβ), on the
other hand, which is often used to fit aging data,
corresponds to the non-analytic function F(R) ∝
R(− ln(R))(β−1)/β.

3. If F(R) = CR for all R, Eq. (12) may be rewritten
to become a differential equation for ∆X(t). This
is a special case of the above-mentioned Tool-type
aging equations [13].
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