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Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids
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This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized
extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic
molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime
of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between
spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays
a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The
transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the
longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic
invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a
characteristic length scale; if the system dimension is comparable to this length the coupling must be included
into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but
dependent on the state point.
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I. INTRODUCTION

The coupling between the molecular spin angular velocity
and the fluid streaming velocity has a significant impact on the
fluid dynamics at small length scales. For example, for flows in
nanochannels the coupling reduces the flow rate considerably
due to the additional energy dissipation source coming from
the molecules’ spin [1]. It has also been shown that the coupling
can act as a pumping mechanism [2,3] or as propellant for
microrobots [4], even on large scales. In the dynamics of
liquid crystals the coupling must be included to account for
the dynamics [5].

Recently, Hansen et al. [6] extended the multiscale dynam-
ical description of fluids to include the molecular spin angular
velocity. This framework is termed generalized extended
Navier-Stokes (GENS) theory, since it is based on the well-
known extended Navier-Stokes equations [7–10] that include
the dynamics of the molecular spin momentum. From the
GENS formalism it is shown [6] that (i) the coupling between
the molecular spin and the hydrodynamic degrees of freedom
can be strictly ignored only in the hydrodynamic limit of
zero wave vector; (ii) for chlorine fluid, the spin relaxation is
wave-vector dependent for low densities but wave-vector inde-
pendent at high densities, indicating that different mechanisms
govern the relaxation for nonzero frequency and wave vector;
and (iii) the longitudinal and transverse spin modes relax with
approximately the same rate which differs substantially from
the modes in the linear velocity field. Moreover, GENS theory
enables a direct way to compute the rotational viscosity from
equilibrium molecular dynamics simulations.

The purpose of this work is twofold. First, how spin
relaxation is affected by varying the molecular moment
of inertia per unit mass and fluid state point is studied.
Second, a characteristic number is defined from the fluid
transport coefficients at zero frequency and wave vector. This
number quantifies the effect of the coupling. To carry out the
investigation molecular dynamics (MD) simulations are used
to simulate model fluids with different moment of inertia and
at different state points.

GENS theory for uncharged systems is based on six funda-
mental correlation functions. In this work, we will focus on two
of them, namely the transverse angular velocity autocorrelation
function (TAVACF) and the longitudinal angular velocity
autocorrelation function (LAVACF). These are defined as [6]

C⊥
��(k,t) = 〈�̃z(k,t)�̃z(−k,0)〉/V, (1a)

C
||
��(k,t) = 〈�̃y(k,t)�̃y(−k,0)〉/V, (1b)

where �̃z(k,t) and �̃y(k,t) are the Fourier components of the
transverse and longitudinal spin angular velocity field. k =
(0,k,0) is then the associated choice of wave vector, V is
the system volume, and 〈. . .〉 denotes the ensemble average.
According to GENS theory, the TAVACF and LAVACF decay
as [6]
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where ηr is the rotational viscosity, ζt and ζl are the transverse
and longitudinal spin viscosities all in the limit of zero
wave vector and frequency, ρ is the mass density, and I

the average moment of inertia per unit mass, here simply the
molecular moment of inertia. According to Eq. (2) the decays
are governed by two processes: a wave-vector-independent
process which is due to the coupling to the linear momentum
and a wave-vector-dependent diffusive process. From MD
simulation of chlorine the TAVACF and LAVACF are indis-
tinguishable except at very large wave vector at the fluid state
point [6]. This indicates that ζt ≈ ζl for most systems. It is
noted that the approximation Eq. (2a) is equivalent to ignoring
the cross-correlation effects [6].

Importantly, Eq. (2) can be applied only to fluid composed
of rigid uniaxial molecules. The general case requires inclusion
of all relevant rotational axes and for flexible molecules even
the dynamics of the moment-of-inertia tensor.
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II. SIMULATION DETAILS

In what follows, all quantities are given in the usual MD
(or Lennard-Jones) units [11]. Three series of simulations
are carried out, series A, B, and C. In series A, a diatomic
molecular fluid is simulated in the NpT ensemble at two
state points, namely (p,T ) = (2.0,1.0) and (p,T ) = (1.0,5.0).
First, the bond length lb varies 0.25 � lb � 1.00, i.e., the
moment of inertia per unit mass is changed. Second, mixtures
of two different molecules are simulated to study the effect
of dispersity. In series B, an asymmetric diatomic molecule
is simulated in the NVT ensemble at different state points.
The asymmetry arises due to the mass differences of the two
constituent atoms; m1 = 1 and m2 = 0.195. The bond length
is fixed at lb = 0.5841. This molecular model is used as a
model for liquid toluene. For series C, a diatomic molecule
with bond length lb = 0.38 is simulated in the NVT ensemble
over a range of densities and at a fixed temperature, T = 4.25.

In all simulations, atoms not belonging to the same
molecule interact via the cut and shifted Lennard-Jones
potential [11],

ULJ(rij ) = 4
(
r−12
ij − r−6

ij

) + ULJ(rc), (3)

if rij � rc, where rij is the distance between atoms i and j .
In series A, the cutoff is set to rc = 21/6, which is the purely
repulsive WCA potential, whereas in B and C the cutoff is at
rc = 2.5. Bonds are flexible using a harmonic spring potential
Us , i.e., for two bonded atoms i and j ,

Us(rij ) = 1
2 ks(rij − lb)2, (4)

with spring constant ks = 1000 in A and ks = 3200 in series
B and C.

The equations of motion are integrated forward in time
using a leap-frog algorithm with time step h = 0.001. The
pressure and temperature are controlled with a Berendsen
barostat and a Nose-Hoover thermostat (see Ref. [11]).

The wave-vector-dependent transverse angular velocity is
found from

�̃z(k,t) = 3

2ρI

∑
j

sz,j (t) exp(−ikyj ), (5)

where yj and sz,j are the y position and z component
of the angular momentum of molecule j . The longi-
tudinal angular velocity is likewise given by �̃y(k,t) =
3/(2ρI )

∑
j sy,j (t) exp(−ikyj ). See Ref. [6] for details. From

these definitions the correlation functions can readily be
evaluated. ηr and ζt are also computed in the limit of zero
frequency and wave vector using the methods described in
Refs. [6,10].

III. RESULTS AND DISCUSSION

Examples of the LAVACF and TAVACF for series A are
shown in Fig. 1(a). For clarity, data for only one TAVACF
is plotted, but all are within statistical uncertainty, as for the
LAVACFs for the wave vectors studied here. The fact that the
TAVACF and LAVACF follow the same relaxation confirms the
relation ζl ≈ ζt . We will from here onward denote the values
of these viscosities using ζ .
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FIG. 1. (Color online) Results from series A. (a) Normalized
LAVACF (filled circles) and TAVACF (crosses) versus time for four
wave vectors k = 0.55,2.77,4.98, and 7.20. Arrow indicates trends
for increasing wave vector. The dashed lines are the corresponding
prediction of the GENS theory in the limit of zero wave vector and
frequency. (b) Corresponding structure factor S(k). (c) Normalized
relaxation time as a function of wave vector. τhyd = ρI/(4ηr ). Lines
serve as a guide to the eye.

Recall that in Fig. 1 the pressure and temperature is fixed
and only inertia, I , is varied. It is seen that the relaxation is
faster for large inertia. The predictions from GENS theory for
the lowest wave vector are plotted in Fig. 1(a) as dashed lines,
where the frequency and wave-vector-independent transport
coefficients are used, so no fitting has been carried out in
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TABLE I. Results for series A. Values for the density and transport
coefficients for (p,T ) = (2.0,1.0). τhyd = ρI/(4ηr ) and lc = √

ζ/ηr ;
see text for details. The number density n is the molecular number
density.

I n ρ ηr × 102 ζ × 102 τhyd lc

0.166 0.299 0.597 14 ± 1 23 ± 3 0.18 1.3
0.011 0.429 0.858 0.35 ± 0.04 0.7 ± 0.1 0.68 1.4

the comparison. The values for the density and transport
coefficients are listed in Table I.

Importantly, increasing I results in a molecular number
density (packing), n, decrease for a particular pressure; in
series A n ∝ I−1. The relaxation is, thus, faster for lower
packing, which contradicts usual viscous behavior as, for
example, the shear viscosity increases dramatically for increas-
ing densities. Figure 1(b) shows the corresponding structure
factor (based on the molecules center of mass). For small I the
fluid is more structured in accordance with the larger number
density, i.e., structure cannot explain the faster dynamics
observed for large moment of inertia. This indicates that the
faster decay seen for large I is an inertia effect.

From the spin relaxation it is possible to determine a
characteristic relaxation time τ . In the strict hydrodynamic
limit the decay is wave-vector independent [see Eq. (2)], and
one relaxation time can be expressed as τhyd = ρI/(4ηr ). τ is,
thus, defined as C

||
��(k,τ ) = exp(−1)C||

��(k,0). In Fig. 1(c)
τ/τhyd is plotted as a function of wave vector. For large
moment of inertia the relaxation is dominated by a wave-
vector-independent process even for large wave vectors. This
is surprising, considering the values for the viscosities in
Table I. The result is interpreted as the rotational viscosity
being frequency dependent and the spin viscosity to be
both frequency and wave-vector dependent [6]. For large
frequencies (fast relaxation) the dynamics is, thus, governed
by the coupling process through ηr . Also, the fact that τ > τhyd

is a result of the frequency dependence.
The moment of inertia entering the GENS theory is the

average moment of inertia of the fluid. Thus, this quantity
can also be varied by mixing molecules with different bond
lengths. This introduces dispersity into the system and may
result in a different fluid structure and dynamics. Two binary
mixtures with molecules having lb = 0.25 and lb = 1.0 are
studied. The fraction of the “smaller” molecule in the first
mixture is 0.586 and 0.879 in the second mixture. This
corresponds to I = 0.075 and I = 0.029. In Fig. 2 the
LAVACF is plotted. It can be seen that the dynamics is faster for
large I as the case for the single-component system. For large
moment of inertia, the decay features smaller wave-vector
dependence; this is also in agreement with the one-component
situation. There is no indication of multiple dynamical modes
due to different molecular relaxations. The structure factor (not
shown) features a smooth transition between the two extremes
shown in Fig. 1(b). It should be stressed that in the supercooled
state, different dynamical relaxation times may be observed;
however, this investigation is not the purpose of the current
study.

The so-called strongly correlating liquids [12] feature
isomorphs [13] in their phase diagram. Along an isomorph the
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FIG. 2. (Color online) Normalized LAVACFs for fluid mixtures
for four wave vectors k = 0.55,2.77,4.98, and 7.20. Arrow indicates
trends for increasing wave vector. For clarity, a small time window is
shown. Lines serve as a guide to the eye.

fluid has invariant structural and dynamical properties when
expressed in appropriate reduced units; the reduced time is
t∗ = tn1/3√kBT /m), where m is the molecule mass and kB is
the Boltzmann constant. Figure 3 shows the LAVACF for the
asymmetric dumbbell (series B) and for the four smallest wave
vectors for two approximative isomorphic state points [14],
(ρ,T) = (0.9679, 0.480) and (ρ, T) = (1.2189, 1.785). Note
the reduced time on the x axis. For comparison, the isotherm
state point (ρ, T) = (0.9679, 1.785) is also shown. First, the
LAVACF decays very fast at these dense packings (atomic
number densities are 1.6184 and 2.04) and the spin momentum
diffusion process is negligible, as discussed above. Second, the
dynamics is clearly isomorphic invariant. It is here noted that
the transverse velocity autocorrelation function (not shown) is
also isomorphic invariant, highlighting the fact that not only
is the multiscale rotational dynamics isomorphic invariant, so
is the multiscale translational dynamics.
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FIG. 3. (Color online) Results from series B. Normalized
LAVACF for the four smallest wave vectors, 0.55 < k < 2.31; the
data points are so close that they cannot be distinguished. The reduced
time, t∗, is given by t∗ = tn1/3

√
kBT /m), where m is the mass and n

is the molecular number density. Lines serve as guide to the eye.
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FIG. 4. (Color online) Results from series A. Rotational and spin
viscosity as a function of moment of inertia in the zero frequency and
wave-vector limit. The lines serve as a guide to the eye.

As discussed above, the rotational and spin viscosities are
functions of the moment of inertia. In Fig. 4 the dependency
is plotted for the two state points in series A. It is seen that
for large I the viscosities are, to a good approximation, linear
dependent of I . In the hydrodynamic regime, one can define
a characteristic length scale lc first discussed in Ref. [15] and
given by

lc(p,T ) =
√

ζ/ηr, (6)

which is independent of I . For the state point (p,T ) =
(1.0,5.0) we get lc ≈ 2.0 and for (p,T ) = (2.0,1.0) lc ≈ 1.5.
Using that ρ ∝ I−1, ζ = l2

c ηr , and ηr ∝ I one can write the
exponent in Eq. (2) as proportional to I , in agreement with
the faster decay seen in Fig. 1(a). Bonthuis et al. [2] suggested
that ζ = a2ηr , where a is the molecule diameter, which must
be estimated for nonspherical molecules. From the discussion
above, this model cannot be strictly valid as the prefactor is
dependent on the state point, something the intrinsic molecular
details are not. Also, in general, we observe that lc > a.

From Fig. 4 it is seen that lc increases for decreasing
pressure and increasing temperature. To explore this in detail,
lc is plotted as a function of density for all three simulation
series, Fig. 5. Note that for the asymmetric molecule (series
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FIG. 5. (Color online) Characteristic length scale as a function of
density for series A (circles), B (triangles), and C (squares).

B) results from isotherms are given. It is seen that lc features a
minimum for medium densities. This can be interpreted as
follows: For low densities the kinetics dominates and the
antisymmetric part of the stress determining ηr is small as
this is arises from the configurational contributions. For large
densities, the spin momentum diffusion is mostly governed
by the couple forces which then grows faster than the
antisymmetric part of the stress. It is worth noting that for
highly packed fluids (series B) the characteristic length scale
is large, meaning that the later suggested mechanism continues
for increasing density.

Finally, it is in place to discuss the importance of lc. For
a steady (i.e., zero frequency) Poiseuille flow in a slit pore
one can quantify a curvature by simple differentiation of the
velocity profile at the center of the channel. Lower curvature
corresponds to lower flow rate. The curvature can be calculated
using the classical Navier-Stokes theory which ignores the
spin dynamics and then by comparison with the predictions
from extended Navier-Stokes theory. The relative difference
between the two descriptions are given by [1]

Crel = 1 − ηr coth(Kh)Kh

(ηr + η0) cosh(Kh)
, (7)

where η0 is the shear viscosity, K = √
4ηrη0/(ζ [ηr + η0]),

and h is the pore half width. In the case of zero coupling,
ηr = 0 and Crel = 1. Two limits are interesting here, namely

lim
lc→∞

Crel = 1 − ηr/(ηr + η0) and lim
lc→0

Crel = 1. (8)

Equation (8) states that, in the hydrodynamic regime, there
exists an upper limit to the effect of the diffusion of spin
momentum and that, ignoring the diffusion, there is no effect
of the coupling. For water at room temperature lc ≈ 3.4 nm
[1,16]. Today, one can fabricate nanopores with widths of only
7 nm [17,18], so the coupling will have significant effects on
the fluid flow rate in these highly confining geometries.

IV. CONCLUSION

In this paper, the spin relaxation of diatomic molecular
fluids was studied. It was shown that the relaxation is
dominated by the fast spin-velocity coupling process for large
moment of inertia, I , and highly packed systems. For low
moment of inertia, the slower spin-diffusion process plays
a significant role in the relaxation despite the fact that the
packing increases for a certain pressure and temperature. The
longitudinal and transverse relaxation modes are identical,
which means that the longitudinal and transverse spin vis-
cosities have the same value.

In the hydrodynamic regime the rotational and spin viscosi-
ties are both linear dependent on I for sufficiently large inertia.
This means that the characteristic length scale, lc, is also
independent of the moment of inertia, i.e., the spin-velocity
coupling effect is unaltered by the moment of inertia. The
characteristic length will, however, depend strongly on the
state point featuring a minimum at medium densities.
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