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We derive exact results for the rate of change of thermodynamic quantities, in particular, the con-
figurational specific heat at constant volume, CV , along configurational adiabats (curves of constant
excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view
of the invariance of various structural and dynamical quantities along them. The slope of the iso-
morphs in a double logarithmic representation of the density-temperature phase diagram, γ , can be
interpreted as one third of an effective inverse power-law potential exponent. We show that in liq-
uids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than
configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctu-
ation formula for the slope of the CV -contours is derived. The theoretical results are supported with
data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The
sign of dγ /dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-
potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of
a dynamical quantity, the self-diffusion coefficient, along adiabats and CV -contours, finding it more
invariant along adiabats. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827090]

I. INTRODUCTION

The traditional notion of a simple liquid-involving
point-like particles interacting via radially symmetric pair
potentials1–13 (for example, the Lennard-Jones (LJ) system)
is challenged by the existence of examples such as the Gaus-
sian core model14 and the Lennard-Jones Gaussian model15, 16

which exhibit complex behavior. Moreover, many molecu-
lar models have simple behavior in computer simulations,
and experiments on van der Waals liquids show that these
are generally regular with no anomalous behavior. We have
recently suggested redefining a simple liquid—termed now
a Roskilde-simple liquid, or just a Roskilde liquid—as one
with strong correlations between the equilibrium virial (W )
and potential-energy (U) fluctuations in the canonical fixed-
volume (NVT) ensemble.17 The basic phenomenology and
theoretical understanding of Roskilde liquids were presented
in a series of five papers published in the Journal of Chem-
ical Physics.18–22 In particular, Appendix A of Ref. 21 es-
tablished an essential theorem of Roskilde liquids: A system
has strong U,W correlations if and only if it has good iso-
morphs (curves in the thermodynamic phase diagram along
which a number of properties are invariant in reduced units21).
The degree of simplicity depends on the thermodynamic
state point—all realistic systems lose simplicity when ap-
proaching the critical point and gas states. To illustrate this,
Figure 1 shows the Lennard-Jones diagram including con-
tours of the correlation coefficient R between U and W . We
choose an (arbitrary) cut-off R > 0.9 as the boundary of
simple-liquid behavior. It is clear from the figure that the cor-
relation coefficient decreases rapidly as the liquid-gas spin-
odal is approached.

The theory of isomorphs starts with their definition and
derives consequences from this which can be tested in simula-
tions. For a system with N particles, two density-temperature
state points (ρ1, T1) and (ρ2, T2) are isomorphic to each other
if the Boltzmann factors for corresponding configurational
microstates are proportional:

exp

(
−U (r1

(1), . . . , rN
(1))

kBT1

)

= C12 exp

(
−U (r1

(2), . . . , rN
(2))

kBT2

)
. (1)

Here U is the potential energy function and C12 depends
on the two state points, but not on which microstates
are considered. Corresponding microstates means ρ

1/3
1 ri

(1)

= ρ
1/3
2 ri

(2), or r̃(1)
i = r̃(2)

i , where a tilde denotes so-called re-
duced units. Reduced units for lengths means multiplying by
ρ1/3, for energies dividing by kBT, and for times dividing
by (m/kBT)1/2ρ−1/3 (for Newtonian dynamics). An isomorph
is a curve in the phase diagram consisting of points which
are isomorphic to each other. From the definition it follows
that all structural and dynamical correlation functions are iso-
morph invariant when expressed in reduced units. Thermo-
dynamic quantities which do not involve volume derivatives,
such as the excess entropy Sex and excess specific heat at
constant volume Cex

V , are also isomorph invariant. Another
consequence of the isomorph definition is that phase bound-
aries lying within the simple region of the phase diagram are
isomorphs—note that the isomorph shown in Fig. 1 is nearly
parallel to the liquid-solid coexistence lines. Reference 28
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FIG. 1. Contour plot of R in (ρ, T) phase diagram for the single-component
Lennard-Jones system using a shifted-potential cutoff of 4σ and system size
N = 1000. Contour values are indicated at the top. Also indicated are bin-
odal and spinodal obtained from the Johnson equation of state with the cutoff
taken into account in a mean-field manner,23 and the corresponding curves for
solid-liquid coexistence as parameterized by Mastny and de Pablo (though for
the larger cutoff 6σ ).24 T and C indicate the triple24 and critical23 points. The
blue curve is a configurational adiabat, while the green line is the configura-
tional isochoric specific heat contour CV = NkB/2 (total specific heat 2NkB);
this is one of the criteria for the dynamic crossover separating liquid and gas
regions in the phase diagram proposed by Brazhkin et al.25–27 According to
the theory of isomorphs both configurational adiabats and CV -contours are
isomorphs for sufficiently large R (Eq. (2)).

gives a brief review of the theory and its experimentally rele-
vant consequences.

Only inverse power-law (IPL) systems, i.e., systems for
which the potential energy is an Euler homogeneous func-
tion, have 100% virial potential-energy correlation and per-
fect isomorphs. Thus for realistic Roskilde liquids the iso-
morph concept is only approximate. Extensive computer
simulations have shown, however, that the predicted iso-
morph invariants apply to a good approximation for several
systems.17, 21, 22, 29–33 A few predictions have also been con-
firmed experimentally.33, 34

Despite the success of the isomorph concept, it remains
a “zero-order” theory, analogous to the ideal gas. In partic-
ular, there is no systematic theory for describing realistic
systems in terms of perturbations about the ideal case. The
purpose of this work is to examine deviations from perfect
isomorph behavior in Roskilde liquids. One motivation is to
understand what kind of deviations from IPL behavior (for ex-
ample, constancy of the scaling exponent) are allowed while
remaining in the “simple part” of the phase diagram. A second
motivation is the hope of using Roskilde liquids to identify a
general theory of liquids. For example, the existence of good
isomorphs explains many observed connections between dy-
namics, structure, and thermodynamics, but also means that
cause-and-effect interpretations of such connections (“the dy-
namics is controlled by . . . ”) must be reexamined. Given per-
fect isomorphs, any isomorph-invariant quantity can be said
to control all the others. This puts a constraint on general
theories, referred to as the “isomorph filter,”21 but prevents
one from sorting among theories that pass the filter. Examin-

ing carefully whether dynamical properties are more invariant
when holding one isomorph-invariant quantity fixed versus
holding another fixed could provide a means to select theories.
The above applies equally well to theories of supercooled liq-
uids and the glass transition; for example, in a theory featuring
a characteristic activation energy or a characteristic tempera-
ture such as the Kauzmann temperature, then requiring the
theory to pass the isomorph filter means that the characteristic
energy/temperature depends on density in a specific manner.

Strong U,W correlation in the equilibrium NVT ensem-
ble is a hallmark, and the first identified feature,35 of Roskilde
liquids. It is characterized at the level of second moments by
the correlation coefficient

R(ρ, T ) = 〈�U�W 〉√
〈(�U )2〉〈(�U )2〉

(2)

and the slope

γ (ρ, T ) = 〈�U�W 〉
〈(�U )2〉 . (3)

Here � represents the deviation of a quantity from its NVT
ensemble average. It has been shown that γ may be thought
of in terms of an effective IPL potential with exponent 3γ

(which in general depends on state point).18, 19 It has also a
thermodynamic interpretation, namely, it is the ratio of the ex-
cess pressure coefficient βex

V ≡ (1/V )(∂W/∂T )V and excess
specific heat per unit volume,

γ = βex
V

cex
V

. (4)

As mentioned, in IPL systems the correlation is indeed
perfect, but non-IPL systems exist which yet have strong
U,W -correlations, in particular the usual LJ fluid. While in
any system the fluctuation formula for γ can be used to gen-
erate curves of constant (excess) entropy Sex (configurational
adiabats) via21 (

∂ ln T

∂ ln ρ

)
Sex

= γ (ρ, T ), (5)

in Roskilde-simple liquids several properties related to struc-
ture, thermodynamics, and dynamics are invariant along these
curves. This leads to their designation as “isomorphs”; note
that quantities must be expressed in thermodynamically re-
duced units to exhibit the invariance.21 As an example of a
structural quantity, the radial distribution function g(r) is typ-
ically found to collapse well when plotted in reduced units
along an isomorph; it could be that higher order measures of
structure are less invariant, though.36 One of the most basic
isomorph-invariant quantities is the specific heat at constant
volume: perfect isomorphs are also CV -contours, while in im-
perfectly correlating systems the CV contours and configura-
tional adiabats may differ.

One might expect that the closer R is to unity, the better
approximated the system would be by a single IPL potential.
So it is perhaps surprising that we have recently identified sys-
tems where γ changes much more than in the LJ case, over
a range in which strong U,W -correlation (R > 0.9) is main-
tained. One such system is the “repulsive Lennard-Jones” po-
tential, in which the sign of the 1/r6 term is made positive.32 It
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seems that the property of strong U,W correlation and the ex-
istence of isomorphs are somehow more robust than the con-
stancy of γ . It can be surprising how well isomorphs “work”
for non-IPL systems. This robustness allows for a richer vari-
ety of behavior, since the shapes of isomorphs are no longer
necessarily straight lines in a (ln ρ, ln T)-plot. The theory of
the thermodynamics of Roskilde-simple liquids32 implies that
γ may be considered a function of ρ only. This immediately
gives us a new quantity (in addition to R and γ ) to charac-
terize Roskilde liquids: dγ /dρ, or more simply, its sign. This
result depends on the assumption that configurational adiabats
and CV -contours exactly coincide. It is not clear what to ex-
pect when this does not hold exactly; this paper is an attempt
to address the topic of imperfect correlation from statistical
mechanical considerations. Because CV is also a fundamen-
tal thermodynamic quantity, the difference between adiabats
and CV -contours should be a useful probe of the breakdown
of perfect isomorphs as U,W -correlation becomes less than
perfect, and will be the focus of this paper.

While, as mentioned above, the arguments of Ref. 32
(which assume perfect isomorphs) show that γ = γ (ρ), in
practice γ does depend on T but the dependence is much
smaller than that on ρ, and we can ignore it most of the
time. This is apparent for the single-component LJ system in
Fig. 5 of Ref. 18. A more explicit quantitative compari-
son, of the logarithmic derivatives of γ with respect to ρ

and T, was made in Ref. 33 for two molecular systems. We
present further data on this below. Fluids with LJ and sim-
ilar potentials (for example, generalized-LJ potentials with
different exponents) tend to have dγ /dρ < 0: It is clear
that γ must converge to one third of the repulsive expo-
nent at very high densities and temperatures while typical
values are larger.19 On the other hand, potentials may be
constructed which have dγ /dρ > 0, simply by shifting the
potential radially outwards so that the repulsive divergence
occurs at a finite value of pair separation. Such potentials
naturally involve a hard core of absolutely excluded volume.
They are relevant to experiments,33 because tests of the iso-
morph theory34 typically involve molecules rather than sin-
gle atoms, with the interaction range being relatively short
compared to the particle size (colloids are an even more ex-
treme example of this, of course). The Dzugutov system,37

although only Roskilde-simple at high densities and tempera-
tures, is another example with dγ /dρ > 0, but where there is
no hard core. Another such system is the above-mentioned
repulsive Lennard-Jones potential; in this case the effec-
tive exponent increases monotonically, interpolating between
the low density limit 6 (γ = 2) and the high density limit
12 (γ = 4).

For brevity we term curves of constant Sex adiabats (the
qualifier “configurational” is to be understood); in this pa-
per, unlike all our other works on isomorphs, we deliberately
avoid calling them isomorphs, since the point of this work
is to examine deviations from perfect isomorph behavior. We
also drop the subscript ex for notational simplicity, and simi-
larly use CV to mean the configurational part of specific heat
(the kinetic part is also isomorph invariant, though, being 3/2
for a classical monatomic system). Below we derive some ex-
act results concerning the relation between adiabats and CV -

contours, and argue how this connects to whether γ is an in-
creasing or decreasing function of ρ (more specifically the
sign of (∂γ /∂ρ)S). The argument involves relating γ to an
exponent determined by derivatives of the pair potential, in-
troduced in Ref. 19. The claim is supported by simulations
of two Roskilde liquids: the LJ fluid (with dγ /dρ < 0) and
the Girifalco fluid (with dγ /dρ > 0 at least for high densi-
ties). The Girifalco potential was constructed to model the ef-
fective interaction between C60 molecules, modeling the car-
bon atoms as Lennard-Jones particles and applying rotational
averaging:38

v(r) = −α

(
1

s(s − 1)3
+ 1

s(s + 1)3
− 2

s4

)

+β

(
1

s(s − 1)9
+ 1

s(s + 1)9
− 2

s10

)
. (6)

where s is the distance two molecules’ centers, scaled by
the diameter. We have chosen the parameters α and β such
that the potential well has a depth of approximately 1 and
the potential diverges at unit distance, β = 0.0018141α with
α = 0.17.

For simulations we use systems of 1000 particles sim-
ulated at constant volume and temperature (NVT) using the
RUMD code39 for simulating on NVIDIA graphical process-
ing units (GPUs). Although the state points considered do not
involve long relaxation times, the speed provided by GPUs is
desirable because reasonably accurate determination of third
moments requires of order 1 × 106 independent samples; we
typically run 50 × 106 steps and sample every 50 steps (the
time step sizes were 0.0025–0.004 for LJ and 0.0004 for Gir-
ifalco). The temperature was controlled using a Nosé-Hoover
thermostat. Part (d) in Fig. 3 shows the correlation coeffi-
cient R along an adiabat for each system. Both systems are
Roskilde-simple (have R > 0.9) in the simulated part of the
phase diagram.

In Sec. II, a general fluctuation formula for derivatives of
thermodynamic quantities along adiabats is derived, and ap-
plied to the case of CV . In Sec. III we show the connection
between the derivative of CV and derivatives of γ . The results
are illustrated with data from simulations. In Sec. IV a fluctu-
ation formula for the slope of contours of CV is derived, and
illustrated with simulation data. Finally, Secs. V and VI are
the discussion and a brief conclusion, respectively.

II. THERMODYNAMIC DERIVATIVES AT CONSTANT
ENTROPY

A. γ as linear-regression slope

Before proceeding to thermodynamic derivatives we re-
call the connection between the above definition of γ and lin-
ear regression. Following Appendix C of Ref. 21 we charac-
terize the deviation from perfect correlation via the fluctuating
variable

ε ≡ �W − γ�U, (7)

which vanishes for perfect correlation. The linear regression
slope is defined by minimizing 〈ε2〉 with respect to γ , leading
to Eq. (3).40 A consequence of this definition of γ is seen by
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writing

�W = γ�U + ε, (8)

and correlating41 this with �U:

〈�W�U 〉 = γ 〈(�U )2〉 + 〈�Uε〉 (9)

From this and the definition of γ it follows that

〈�Uε〉 = 0, (10)

that is, U and ε are (linearly) uncorrelated, independent of
whether perfect correlation holds between U and W .

B. Density-derivatives of averages on adiabats

We are interested in the derivatives of thermodynamic
quantities along certain curves in the phase diagram, in par-
ticular those of constant S, so we start by presenting general
formulas for the derivatives with respect to ln ρ and ln T (hold-
ing the other constant). From standard statistical mechanics
(see, for example, Appendix B of Ref. 18) we have (with β

= 1/(kBT); in the following we set kB = 1)(
∂ 〈A〉
∂β

)
ρ

= −〈�U�A〉 (11)

which implies (
∂ 〈A〉
∂ ln T

)
ρ

= β 〈�U�A〉 . (12)

Likewise (see Appendix A),(
∂ 〈A〉
∂ ln ρ

)
T

=
〈

∂A

∂ ln ρ

〉
− β 〈�W�A〉 , (13)

where differentiation with respect to ln ρ inside an expecta-
tion value—that is, for an arbitrary configuration rather than
an ensemble average—is understood to imply that the reduced
coordinates of the configuration, r̃i ≡ ρ1/3ri , are held fixed.
Equations (12) and (13) can be used to construct the deriva-
tive with respect to ln ρ along an arbitrary direction; that is
instead of keeping T constant (a line of zero slope) we take a
direction with slope g (in ln ρ, ln T space):(

∂ 〈A〉
∂ ln ρ

)
[g]

=
(

∂ 〈A〉
∂ ln ρ

)
T

+ g

(
∂ 〈A〉
∂ ln T

)
ρ

(14)

=
〈

∂A

∂ ln ρ

〉
− β 〈�W�A〉 + gβ 〈�U�A〉 (15)

=
〈

∂A

∂ ln ρ

〉
− β 〈�A(�W − g�U )〉 . (16)

Note that we use subscript [g] to indicate that g is the slope
in the ln ρ, ln T plane, rather than the quantity held constant,
in the derivative. This expression can be used to find formulas
for the direction in which a given thermodynamic variable is
constant, as we do below. For now we choose g = γ , to obtain

a formula for derivatives along adiabats (Eq. (5)):

(
∂ 〈A〉
∂ ln ρ

)
S

=
〈

∂A

∂ ln ρ

〉
− β 〈�A�(W − γU )〉

=
〈

∂A

∂ ln ρ

〉
− β 〈�A ε〉 . (17)

As an example, we take A = U. Noting that
W ≡ ∂U/∂ ln ρ and Eq. (10), we get

(
∂ 〈U 〉
∂ ln ρ

)
S

=
〈

∂U

∂ ln ρ

〉
= 〈W 〉 , (18)

which is a general result that can also be derived
thermodynamically starting with the fundamental ther-
modynamic identity T dS = dU + pdV = dU + Wd ln(V )
= dU − Wd ln ρ (here the variables U, W refer to macro-
scopic, or thermally averaged quantities, the omission of
angle-brackets notwithstanding). As a second application of
Eq. (17), consider a system with perfect correlation. Then ε

≡ 0, and we get

(
∂ 〈A〉
∂ ln ρ

)
S

=
〈

∂A

∂ ln ρ

〉
, (19)

which means that in such systems the derivative along an adi-
abat is given entirely by the “intrinsic” density dependence for
individual configurations; fluctuations do not contribute. This
is of course the case of perfect isomorphs, where the probabil-
ities of scaled configurations are identical along an isomorph.

C. Variation of CV on adiabats

We consider the derivative of CV with respect to ln ρ on
an adiabat. From CV = 〈

(�U )2
〉
/T 2, we have

(
∂CV

∂ ln ρ

)
S

= 1

T 2

(
∂〈(�U )2〉

∂ ln ρ

)
S

− 2

T 3
〈(�U )2〉

(
∂T

∂ ln ρ

)
S

(20)

= 1

T 2

(
∂〈(�U )2〉

∂ ln ρ

)
S

− 2γ

T 2
〈(�U )2〉. (21)

Writing 〈(�U)2〉 = 〈U2〉 − 〈U〉2 and making use of
the general result of Eq. (17), after some algebra (see
Appendix B) we obtain the simple result

(
∂CV

∂ ln ρ

)
S

= −β3〈(�U )2�(W − γU )〉 = −β3〈(�U )2ε〉.
(22)

This is a major result of this paper. Note that the right side
vanishes for perfect correlation (ε = 0)—in which case CV is
constant on the same curves that S is; in other words, CV is
a function of entropy only. For less than perfect correlation,
the most interesting feature is the sign, which we argue in
Sec. III, is the opposite of that of dγ /dρ.
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III. CONNECTION BETWEEN (∂CV /∂ρ)S
AND DERIVATIVES OF γ

A. Relation to temperature-dependence of γ

We wish to understand the sign of 〈(�U)2ε〉. We know
from Eq. (10) that U and ε are linearly uncorrelated; we must
now consider higher order correlations. Recall that γ may also
be interpreted18 as the slope of isochores in the W,U phase
diagram—the linear regression of the scatter-plot of instanta-
neous W,U values at one state point gives the slope of 〈W 〉
versus 〈U〉 at fixed density. The triple correlation is related to
the curvature of the isochore, and thus to (∂γ /∂T)ρ . We obtain
the exact relation by differentiating γ with respect to β:(

∂γ

∂β

)
ρ

= 1

〈(�U )2〉
(

∂ 〈�U�W 〉
∂β

)
ρ

−〈�U�W 〉
〈(�U )2〉2

(
∂〈(�U )2〉

∂β

)
ρ

(23)

= −〈(�U )2�W 〉
〈(�U )2〉 − γ

〈(�U )2〉
(−〈(�U )3〉) (24)

= −〈(�U )2(�W − γ�U )〉
〈(�U )2〉 (25)

= −
〈
(�U )2ε

〉
〈
(�U )2

〉 , (26)

where we have used Eq. (11) and some algebraic manipula-
tion as in Appendix B. Combining this result with Eq. (22)
gives(

∂CV

∂ ln ρ

)
S

= β2〈(�U )2〉β
(

∂γ

∂β

)
ρ

= −CV

(
∂γ

∂ ln T

)
ρ

,

(27)
or more concisely(

∂ ln CV

∂ ln ρ

)
S

= −
(

∂γ

∂ ln T

)
ρ

. (28)

B. Relation to density-dependence of γ via the
effective IPL exponent n(2)(r)

The last result implies, in particular, that the sign of the
density-derivative of CV along an isomorph is opposite to that
of (∂γ /∂T)ρ . Since the latter derivative is neglected in the the-
ory of isomorphs, it is useful to find a connection with a den-
sity derivative of γ . The relevant derivative turns out not to
be (∂γ /∂ρ)T but (∂γ /∂ρ)S, i.e., the derivative of γ along the
adiabat. For many systems of interest this derivative has the
same sign as (∂γ /∂T)ρ , while those signs can be positive or
negative depending on the system (or even for a given sys-
tem). We shall now argue that this sign-equivalence is to be
expected by considering how γ is related to the pair poten-
tial v(r). This is an interesting question in its own right, and
was explored in Ref. 19. For potentials with strong repulsion
at short distances, we can indeed relate γ directly, albeit ap-
proximately, to v(r), or more precisely, to its derivatives. As

discussed in Ref. 19 the idea is to match an IPL to the ac-
tual potential; γ is then one third of the “effective IPL ex-
ponent.” There are many ways to define such an exponent,
but a key insight is that it should involve neither the poten-
tial itself (because shifting the zero of potential has no con-
sequences), nor its first derivative (because the contributions
to the forces from a linear term tend to cancel out in dense
systems at fixed volume).19 The simplest possibility within
these constraints involves the ratio of the second and third
derivatives. For an IPL, v(r) ∝ 1/rn, and indicating deriva-
tives with primes, we have v′′′(r)/v′′(r) = −(n + 2)/r , so n
can be extracted as −rv′′′(r)/v′′(r) − 2. For a general pair po-
tential this quantity will be a function of r, and thus we define
the r-dependent second-order effective IPL exponent n(2)(r)
as19

n(2)(r) ≡ − rv′′′(r)

v′′(r)
− 2. (29)

The superscript “(2)” indicates which derivative appears in the
denominator; one can similarly19 define n(p)(r) for p = 0, 1,
. . . ; p = 2 is the first not involving v or v′. Interestingly, the
IPL is not the only solution to n(2)(r) = n with constant n; so
is the so-called extended IPL

veIPL(r) = A/rn + Br + C, (30)

introduced in Ref. 19. The resemblance of the Lennard-Jones
potential to such a form can be considered an explanation of
why it inherits many of the properties of the IPL potential. For
a general potential, the question that now arises is at which r
one should evaluate n(2). It was argued in Ref. 19 that n(2)/3
evaluated at a point near the maximum of g(r)—let us call it
rγ —should correspond to γ . One expects that, like the peak
in g(r), rγ = 
ρ−1/3, where 
 is of order unity and depends
weakly on temperature, but we do not know it precisely a pri-
ori. There are two crucial things we can say, however: First,
we can certainly identify rγ a posteriori by inspection for a
given state point: That is, having simulated a reference state
point (ρref, Tref) and determined γref there, it is straightforward
to (typically numerically) solve the equation n(2)(rγ )/3 = γref

for rγ . The second crucial point is that whatever details of
the liquid’s statistical mechanics determine rγ (for instance,
a kind of g(r)-weighted average), these details do not vary
along an isomorph (this argument assumes good isomorphs,
so that the statement can be applied to adiabats). Therefore,
rγ is an isomorph invariant—more precisely its reduced-unit
form ρ1/3rγ = 
 is constant along an adiabat, which implies

 = 
(S). So γ is given by

γ (ρ, S) = 1

3
n(2)(
(S)ρ−1/3), (31)

or

γ (ρ, S) = 1

3
n(2)

(
rγ,ref(S)

ρ−1/3

ρ
−1/3
ref

)
. (32)

In the form with 
 we explicitly recognize that 
 is constant
on an isomorph, or equivalently, that it depends on S; the sec-
ond form shows how 
 can be determined using a simulation
at one density to identify rγ there.
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For the Lennard-Jones potential n(2)(r) decreases as r de-
creases (corresponding to as ρ increases), while for potentials
such as the Girifalco potential with a divergence at finite r
(see Fig. 3), it increases as r decreases (ρ increases), although
at low densities the opposite behavior is seen. The validity
of Eq. (31) has been investigated by Bøhling et al.42 Under
which circumstances does Eq. (31) give a good estimate of
the density dependence of γ ? The system must have suffi-
ciently strong W,U correlations, since as R → 0, γ must
also vanish irrespective of n(2)’s behavior. (For example, in
a Lennard-Jones-like liquid, as r increases, the curvature of
the pair potential becomes negative at some r, at which point
n(2) diverges. At or below the corresponding density, and not
too high temperature, a single phase is likely to have a neg-
ative pressure and be mechanically unstable, giving way to
liquid-gas coexistence. In this regime W,U correlations tend
to break down completely and γ goes to zero; see Figs. 3(c)
and 3(d), in particular the Girifalco data.)

Equation (31) shows how γ depends on ρ, but we need to
consider temperature dependence in order to connect with the
result for CV along an adiabat. This comes in through 
(S).
We cannot right away determine how 
 depends on S but we
know it is a weak dependence, since rγ is expected to remain
close to the peak in g(r).42 For liquids with a repulsive core
this peak moves slowly to shorter distances as temperature,
and hence entropy, increase at fixed ρ. We expect the same
to be true for 
, since in the high-temperature limit potential
energy and virial fluctuations, and thus γ , are dominated by
ever smaller pair separations. Thus we expect that

d
(S)

dS
< 0, (33)

while the weak dependence on entropy/temperature at fixed
density can be expressed as

CV

d ln 
(S)

dS
� 1, (34)

(the use of CV to make the left side dimensionless, instead
of, for example, differentiating with respect to ln S, is done
for convenience below; note that CV varies slowly and has a
similar order of magnitude to the entropy differences between
isomorphs in the liquid region of the phase diagram). From
Eq. (33) it follows that both increasing ρ at fixed S, and in-
creasing T at fixed ρ, decrease the argument of n(2). (Recall
that in the earliest work on Roskilde liquids it was noted that
the slope of the W,U correlation converges down towards
12/3 = 4 for the LJ case both in the high temperature and
the high density limits.35) Taking the appropriate derivatives
of Eq. (31) yields

(
∂γ

∂ ln ρ

)
S

= −
(S)ρ−1/3

9

dn(2)(r)

dr

∣∣∣∣
r=
(S)ρ−1/3

, (35)

(
∂γ

∂ ln T

)
ρ

= 
(S)ρ−1/3

3

dn(2)(r)

dr

∣∣∣∣
r=
(S)ρ−1/3

d ln(
(S))

dS
CV .

(36)

TABLE I. Validity of Eq. (38) for several potentials. For each system the
signs of (∂γ /∂T)ρ and (∂γ /∂ρ)S have been checked for a set of adiabats.
For the Lennard-Jones, Buckingham and Dzugutov system the density range
gives the lowest densities of the simulated adiabats while the temperature
range gives the range of temperatures simulated for each adiabat. For the
Girifalco and repulsive Lennard-Jones the density range indicates the range
of densities simulated for each adiabat, while the temperature range indicates
the lowest temperatures. Data near extrema of γ have not been included.

Potential ρ-range T-range (∂γ /∂T)ρ (∂γ /∂ρ)S

Lennard-Jones 0.6–1.2 0.8–5.0 − −
Buckingham 0.7–1.2 2–6 − −
Dzugutov 0.55–0.8 0.75–1.2 + +
Girifalco 0.45–0.5 6–54 + +
Repulsive Lennard-Jones 0.1–10 0.4–2.0 + +

Combining these gives(
∂γ

∂ ln T

)
ρ

=
(

∂γ

∂ ln ρ

)
S

(
−3

d ln(
(S))

dS
CV

)
. (37)

From Eqs. (33) and (34) the quantity in brackets on the right
side is positive but much smaller than unity. We therefore have

sgn

((
∂γ

∂T

)
ρ

)
= sgn

((
∂γ

∂ρ

)
S

)
,

(38)∣∣∣∣∣
(

∂γ

∂ ln T

)
ρ

∣∣∣∣∣ �
∣∣∣∣
(

∂γ

∂ ln ρ

)
S

∣∣∣∣ ,
which is expected to hold for liquids with repulsive cores,
with sufficiently strong W,U -correlations. It remains to be
investigated thoroughly to what extent Eq. (38) holds, both re-
garding in how large a region of the phase diagram it holds for
a given liquid, and for which liquids it holds in a reasonably
large region. Its validity depends both on that of Eq. (31) and
the conjecture that 
 decreases, slowly, as entropy increases.
Some data are shown in Table I which compares the signs
of the two derivatives for different systems and Fig. 2 which
compares the two derivatives at state points along an adiabat
for the LJ system. For comparison the density derivative at
fixed temperature is also shown, obtained via chain-rule com-
bination of the other two derivatives. This involves a minus
sign and therefore the two terms (which have the same sign)
tend to cancel.

In the limit of perfect W,U correlation we know
(∂γ /∂T)ρ vanishes. There is no reason to expect 
 to become
constant in this limit,43 therefore (∂γ /∂ρ)S must also vanish
in the limit. This corresponds to n(2)(r) becoming constant:
IPL or extended IPL systems (Eq. (30)). But because the de-
pendence of 
 on S is in general weak, there is a regime—
that of general Roskilde liquids—where we can neglect it, but
where n(2) cannot be considered constant. In this approxima-
tion, then, we can write the density derivative as an ordinary
derivative. Combining this with Eq. (28) we have the follow-
ing result for the sign of the CV :

sgn

((
∂CV

∂ ln ρ

)
S

)
= − sgn (dγ /dρ) . (39)
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FIG. 2. Logarithmic derivatives of γ : (1) with respect to T at constant ρ,
(2) respect to ρ at constant S and (3) respect to ρ at constant T, for the LJ
system at points along the adiabat including ρ = 0.85, T = 0.80. The first
derivative was determined via fitting ln (γ ) versus ln T data (obtained also
for neighboring adiabats) at each ρ to a quadratic function; the second an-
alytically after making a (one-parameter) fit to the logarithmic derivative of
Eq. (C5), and the third via the chain rule as a linear combination of the other
two, (∂ln (γ )/∂ln ρ)T = (∂ln (γ )/∂ln ρ)S − γ (∂ln (γ )/∂ln T)ρ . While all de-
crease to zero at high densities (consistent with γ converging to a constant 4
= 12/3) the temperature derivative is consistently a factor of ten smaller than
the density derivative at constant S.

Thus, we can predict—based on the n(2) estimate of γ —
that the rate of change of CV along an adiabat has the opposite
sign as the density dependence of γ (along the adiabat if we
need to be specific). Thus from knowing only the pair poten-
tial one can say something reasonably accurate about both the
adiabats and the CV -contours.

C. Simulation results for variation of CV
along adiabats

To confirm the relation between the sign of dγ /dρ and
that of (∂CV /∂ρ)S and exhibit the relation between adiabats
and CV contours we carried out simulations on two model
systems. Figure 3(a) shows the pair potentials. Note that the
Girifalco potential diverges at r = 1; this hard core restricts
the density to be somewhat smaller than for the LJ case. Part
(b) of Fig. 3 shows the effective exponent n(2)(r). There is a
singularity where the second derivative vanishes (the transi-
tion from concave up to concave down), which can be seen in
the figure at r 	 1.224 for LJ and r 	 1.48 for Girifalco; as
r decreases from the singularity n(2) decreases monotonically
in the LJ case, while in the Girifalco case it first decreases and
then has a minimum before increasing and in fact diverging as
r = 1 is approached. Part (c) of Fig. 3 shows the estimate of
γ (ρ) from Eq. (31) along with γ (ρ) calculated in simulations
along an adiabat for each system. Here 
 was determined by
matching n(2)/3 with γ at the highest density. The agreement
is good for not too low densities—as mentioned above when
n(2)(r) diverges due to the curvature of the potential vanishing,
then both R and γ will rapidly approach zero, which is what
we can see happening for the Girifalco system in parts (c) and
(d) and low density. Note that the adiabat for the Girifalco
system rapidly reaches rather high temperatures, since the ex-
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FIG. 3. (a) The pair potentials used in this work. The Girifalco potential
diverges at r = 1. (b) n(2)(r) for the two potentials. (c) n(2)(
ρ−1/3) (full
lines) and γ on sample adiabats for both models (symbols). The entropy was
not calculated, but adiabats are uniquely specified by giving one state point,
for example, ρ = 0.80, T = 0.80 for the LJ case and ρ = 0.4, T = 4.0 for
the GF case. The value of 
 was fixed by requiring agreement with γ at the
highest simulated density for each isomorph. (d) Correlation coefficient R
from simulations, along the same adiabats as in (c).

ponent is always greater than 15, or roughly three times that
of the LJ system. More interestingly, for the Girifalco system
dγ /dρ changes sign at a density around 0.4, so we can expect
the dependence of CV along an adiabat to reflect this. The
location and value of the minimum in γ do not match those
for n(2), however—perhaps the vanishing of the curvature is
already having an effect.

The procedure for determining adiabats is described in
Appendix C. Figures 4 and 5 show cV = CV /N along adia-
bats for the LJ and Girifalco systems, respectively. For the LJ
case the slope is positive, which is consistent with dγ /dρ be-
ing negative as discussed in Sec. III. It is worth noting that
the overall variation of CV is quite small, of order 0.1 per
particle for the density range shown, but it is not negligible,
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FIG. 4. Dependence of cV = CV /N on density along six different adiabats
for the LJ fluid. We label the curves by their temperature at a fixed density,
here the starting density ρ = 0.8. The change in cV is of order 0.1–0.15 for
the ∼50% change in density shown here, small but not negligible. The slopes
are positive, consistent with the negative sign of dγ /dρ and arguments of
Sec. III.
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FIG. 5. Dependence of cV = CV /N on density along four different adia-
bats for the Girifalco fluid. The curves are labelled by their temperature at
ρ = 0.4. For the ∼20% changes in density shown here, cV changes by about
0.05. It is generally decreasing in the range shown but increases at low densi-
ties and temperatures; the maxima (determined by fitting a cubic polynomial)
are shown as crosses, and appear at different densities for different adiabats.

even though the system has strong U,W correlations and the
structure and dynamics have been shown to be quite invari-
ant along the adiabats. For the Girifalco system the slope is
positive at low density until a maximum is reached, with a
negative slope at higher densities. This is also broadly con-
sistent with the expectations from Fig. 3 (the locations of the
maxima are not expected to be accurately given by Eq. (31)).

D. Contours of CV and S directly compared

As an alternative to considering how CV varies along an
adiabat, we can find the contours of CV separately. First we
simulated several isochores, then the data were interpolated
to allow constant-CV curves to be constructed. Specifically,
we find that the dependence of CV on temperature along an
isochore can be accurately fitted by the expression

CV (T ) = A(ρ)

T B(ρ)
+ C(ρ), (40)

where A, B, and C are functions of ρ. This expression was
inspired by the Rosenfeld-Tarazona expression CV ∼ T −2/5

for the specific heat;44 we do not constrain the exponent B
to be 2/5, however. The expression can easily be inverted to
yield the temperature TCV

(ρ) corresponding to a given value
of CV , as a function of density

TCV
(ρ) =

(
A(ρ)

CV − C(ρ)

)1/B(ρ)

. (41)

The CV contours are shown along with the adiabats in
Figs. 6 and 7. Recall that in typical liquids we expect CV to
increase as T decreases or ρ increases. For the LJ case the CV

contours have a higher slope than the adiabats, therefore as ρ

increases along an adiabat we cross contours corresponding to
higher values of CV . For the Girifalco system the CV contours
have initially (at low density) higher slopes than the adiabats
but then bend over and have lower slopes. Thus the picture
is consistent with the data for CV along adiabats shown in
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FIG. 6. Comparison of adiabats and CV -contours for the LJ system. The
adiabats are the same as those shown in Fig. 4, and were calculated using
Eq. (C3), while CV -contours (values 0.9, 1.0, 1.1, and 1.2 in units of kB) were
determined from a series of simulations on different isochores and interpolat-
ing the CV data as a function of T (some extrapolated points, indicated, were
also included).

Figs. 4 and 5. It cannot be otherwise, but there is more in-
formation here compared to those figures. For example, the
adiabats are closer to the straight lines (in the double-log rep-
resentation) expected for IPL systems, while the CV -contours
have more non-trivial shapes. Furthermore a small variation
of CV along an adiabat could hide a relatively large differ-
ence in slope between CV -contours and adiabats (since CV is
typically a relatively slowly varying function).

IV. FLUCTUATION FORMULA FOR GENERATING
CONTOURS OF CV

Apart from investigating the variation of CV along an adi-
abat, it is of interest to identify the contours of CV ; the non-
constancy of CV along an adiabat is equivalent to the state-
ment that the CV contours do not coincide with the adiabats,
although we can expect them to be close for Roskilde liquids.
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FIG. 7. Comparison of adiabats with CV -contours for the Girifalco system.
The adiabats were calculated using the definition of γ and small changes in ρ,
while CV -contours were determined from a series of simulations on different
isochores and interpolating the CV data as a function of T.
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In practice, we identify CV contours using the interpolation
procedure described above, but it is potentially useful from a
theoretical point of view to have a fluctuation formula for the
slope of these curves. This we derive in this section.

Since the variation of CV along an adiabat (Eq. (22))
involves the difference between two triple correlations
〈(�U )2�(W − γU )〉 (which vanishes for perfect correla-
tion); it is tempting to speculate that the ratio

〈(�U )2�W 〉
〈(�U )3〉 , (42)

which equals γ for perfect correlation, gives the slope of
curves of constant CV . But it is not so simple. The total deriva-
tive of CV with respect to ln ρ along an arbitrary slope g in the
(ln ρ, ln T) plane is(

∂CV

∂ ln ρ

)
[g]

=
(

∂CV

∂ ln ρ

)
T

+ g

(
∂CV

∂ ln T

)
ρ

. (43)

We need to calculate the partial derivatives with respect to T
and ρ. From Appendix D:(

∂CV

∂ ln T

)
ρ

= −2β2〈(�U )2〉 − β3 ∂〈U 2〉
∂β

− 2β3〈U 〉〈(�U )2〉.
(44)

From Eqs. (11) and (B8) we have

∂〈U 2〉
∂β

= −〈�U�(U 2)〉 (45)

= −〈�U (2〈U 〉�U + (�U )2 − 〈(�U )2〉)〉 (46)

= −2〈U 〉〈(�U )2〉 − 〈(�U )3〉. (47)

Inserting this into Eq. (44) gives(
∂CV

∂ ln T

)
ρ

= −2β2〈(�U )2〉 + β3〈(�U )3〉. (48)

It might seem surprising that the third moment appears, since
one expects the limit of large N that the distribution converges
to a Gaussian, in accordance with the central limit theorem. A
closer look at the proof of that theorem shows that when con-
sidering the summed variable (here the total potential energy),
all the so-called cumulants are proportional to N, and both the
second and third moments are equal to the corresponding cu-
mulants, and therefore proportional to N. It is when one con-
siders the average instead of the sum (potential energy per
particle instead of total potential energy) that one finds the
third moment and cumulant vanishing faster than the second
(1/N2 as opposed to 1/N) in the limit of large N.

The density derivative of CV ,(
∂CV

∂ ln ρ

)
T

= β2

(
∂〈U 2〉
∂ ln ρ

)
T

− β22 〈U 〉
(

∂ 〈U 〉
∂ ln ρ

)
T

, (49)

is evaluated in Appendix D with the result(
∂CV

∂ ln ρ

)
T

= −β3〈�W (�U )2〉 + 2β2 〈�U�W 〉 . (50)

The derivative of CV along an arbitrary slope g is then(
dCV

d ln ρ

)
[g]

=CV

(
β〈(�U )3〉g−β〈(�U )2�W 〉

〈(�U )2〉 +2(γ −g)

)
.

(51)
Note that with g = γ we recover Eq. (22). When the correla-
tion is not perfect we can set this expression to zero and solve
for the slope g which gives curves of constant CV , now calling
it γCV

≡ (∂ ln T/∂ ln ρ)CV
:

γCV

(
β〈(�U )3〉
〈(�U )2〉 − 2

)
= β〈(�U )2�W 〉

〈(�U )2〉 − 2γ (52)

or

γCV
= 〈(�U )2�W 〉 − 2T γ 〈(�U )2〉

〈(�U )3〉 − 2T 〈(�U )2〉 . (53)

Again we check the case of perfect correlation where we can
replace �W by γ�U and see that we get γ as we should. We
can also write this as γ plus a correction term:

γCV
= γ + 〈(�U )2ε〉

〈(�U )3〉 − 2T 〈(�U )2〉 . (54)

Figure 8 shows the fluctuation-determined slope γCV
of a

CV contour in the (ln ρ, ln T)-plane along the CV = 1.0 con-
tour of the LJ system. We present the CV -contour here to be
able to check the validity of the exponent: The (fixed) ex-
ponent determined by a fit of the contour to a power law is
also indicated for comparison. A clear trend is observed with
γCV

higher than γ , and like the latter decreasing towards 4
as the density increases. There is some scatter due to the dif-
ficulty in determining third moments (compare the data for
γ which are based on second moments), so this would not
be a practical method for determining the contours. On the
other hand, if we are interested in knowing roughly how big
the difference in slope between an adiabat and a CV -contour
is, we do not need to simulate a CV -contour–we can simu-
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FIG. 8. Plot of γCV
= (∂ ln T/∂ ln ρ)CV

estimated from fluctuations, along
the CV = 1.0 contour for the LJ system. The contour was determined by
interpolation. The horizontal line indicates the slope found by fitting the con-
tour to a power-law form for comparison. The decrease of γCV

towards large
densities is expected, just as with γ (also shown) since at high densities we
expect both to converge to one third of the repulsive exponent, i.e., 4. The
inset shows CV versus ρ along the contour as a check that the contour was
correctly determined.
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ρ, compared to γ .

late a few state points, perhaps on an isochore, and estimate
the γCV

from fluctuations. The scatter is not a big problem
if we are not using γCV

to determine where to simulate next.
Figure 9 compares γCV

with γ for both LJ and Girifalco sys-
tem along an adiabat, and the trends are very clear: the CV -
contours have definitely larger slope for the LJ system, closer
to 6 than 5 (they must converge to 4 at high density). For the
Girifalco system the differences are quite dramatic, more so
than the direct comparison of the contours in Fig. 7 (where
a logarithmic temperature scale was used). It is worth not-
ing that all the data here correspond to state points with R
> 0.985, i.e., very strong U,W correlation, and that nothing
special happens when the exponents are equal (e.g., ρ ∼ 0.42
in Fig. 9(b)) (in any system one can define phase-space curves
along which γ − γCV

= 0; it would be significant only if a
two-dimensional region of equality existed).

V. DISCUSSION

A. Roskilde liquids are more than, and more
interesting than, IPL liquids

IPL liquids are perfectly correlating and have perfect
isomorphs—straight lines in the (ln ρ − ln T) plane with
slope given by one third of the IPL exponent. In this case
the phase diagram is completely degenerate—the isomorphs
are contours of excess entropy, CV and all structural and dy-
namical properties (when expressed in reduced units). Liq-
uids which have strong, but not perfect U,W correlation are
much more interesting: we can still identify excellent iso-
morphs via Eq. (5), as adiabats, but these are no longer con-
strained to be power laws; the effective exponent can vary
along an isomorph/adiabat and can exhibit non-trivial density
dependence.42 Moreover, CV contours deviate now from the
isomorphs/adiabats in a manner connected to the density de-
pendence of γ .

It is interesting to compare the insight obtained from
statistical mechanical versus thermodynamic considera-
tions. Using statistical mechanics—the arguments leading to
Eq. (38)—we have shown that (∂γ /∂T)ρ vanishes when cor-

relation is perfect, and this occurs only for (extended) IPL
systems (see Eq. (30)). We have also argued that in liquids
with strong but not perfect U,W correlations the tempera-
ture derivative is relatively small, therefore as a first approx-
imation it can be ignored, leaving the density dependence
of γ as a new characteristic for a Roskilde liquid. On the
other hand the purely thermodynamic arguments presented in
Ref. 32 constrain only (∂γ /∂T)ρ to be zero, leaving γ free to
depend on density, which allows for the richer set of behaviors
just mentioned. The thermodynamic argument leads more di-
rectly (and elegantly) to the empirical truth—that in practice
γ ’s temperature dependence is small compared to its density
dependence—while the statistical mechanical arguments fill
in the details of why this is the case.

B. Is isomorph theory the zeroth term
in a systematic expansion?

The isomorph theory was characterized in the introduc-
tion as a “zero-order” theory, analogous to the ideal gas. For
the latter there exists a systematic expansion (the virial se-
ries, with the small parameter being density times molec-
ular volume) for obtaining the equation of state for inter-
acting systems, or for obtaining transport properties (kinetic
theory).45, 46 It is an open question whether a similar expan-
sion exists where perfect isomorphs correspond to the zeroth
term. If so, one could quantify the errors made in using the
isomorph theory. A natural starting point might be thermo-
dynamic perturbation theory using an IPL reference system,
but here caution should be advised, because this would ignore
that fact γ varies along an isomorph and in any case we do not
have exact or near exact analytical solution for the thermody-
namics and structure of the IPL system. Furthermore, tradi-
tional thermodynamic perturbation theory is primarily con-
cerned with thermodynamics (equation of state), less so with
structure, and not much at all with dynamics; isomorph the-
ory makes predictions primarily for structure, dynamics, and
some thermodynamic quantities but in general not the equa-
tion of state as such (though see Refs. 22 and 47). In partic-
ular, the use of variational perturbation theory to estimate the
IPL exponent at a given state point through an optimal pertur-
bation estimate of the free energy typically finds an exponent
larger than γ .48

C. Status of n(2) and relation between
different γ derivatives

The claim (38) needs to be thoroughly investigated by
simulation for a wider range of systems as does the valid-
ity of Eq. (31) as an estimate of γ . While we have argued
these for high temperatures and densities, their validity could
turn out to depend on how strong U,W -correlation a liquid
has, though it seems that R > 0.9 is not necessarily required,
that is, they apply more generally than strong U,W corre-
lation. One could imagine that it would be useful to derive
a fluctuation formula for (∂γ /∂ρ)S. We have indeed derived
such a formula, see Appendix E, but it is not particularly
simple, and we have not been able to use it to make a more
rigorous theoretical connection with (∂γ /∂T)ρ—even the sign
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is far from obvious due to near cancellation of the various
terms. Its usefulness in simulations is also expected to be
limited since it involves fluctuations of the so-called hyper-
virial (the quantity used to determine the bulk modulus from
fluctuations49) which is not typically available in a MD sim-
ulation. On the other hand, from the other results presented
here, one can use the quantity 〈(�U)2ε〉 or the formula for
γCV

to determine the sign of (∂γ /∂ρ)S from a simulation of a
single state point.

D. Adiabats versus CV contours
in non-Roskilde-simple liquids

It is interesting to consider a non-simple liquid, where
there is no reason to expect that CV -contours at all coincide
with adiabats (i.e., there are not good isomorphs). We have
done so for two liquids without actually determining the CV -
contours; instead we just calculated the exponent γCV

from
the fluctuations. As mentioned above this is accurate enough
to give an idea of the trends, in particular which way the CV -
contours are oriented with respect to the adiabats. The first
example is the Dzugutov fluid.37 Figure 10 shows γCV

and γ

for this system along an adiabat. In the range shown R takes
values from ∼0.56 to ∼0.84. As the figure shows γCV

is sub-
stantially smaller than γ . We can note also that this is con-
sistent with the positive slope dγ /dρ, and suggests the argu-
ments leading to Eq. (38) do not necessarily require strong
W,U correlation. The Lennard-Jones-Gaussian system15 be-
haves similarly (data not shown). A very different example is
the Gaussian core potential,14 which lacks a hard core (thus
particles can overlap/penetrate each other) for which data is
also shown in Fig. 10. In this case there is almost no W,U

correlation; 0.16 > R > 0.06, and in fact γCV
and γ even have

opposite sign (although both are close to zero). Moreover, this
system clearly violates Eq. (38), since γ decreases with den-
sity on the adiabat shown, which should correspond to the
case γCV

> γ (as in the LJ case); this is not surprising since it
does not have a hard core.

0.7 0.72 0.74 0.76 0.78 0.8
ρ

0

1

2

3

4

5

γ C
V
,γ

γ
C

V

γ

0.9 0.95 1 1.05
ρ

-0.2

-0.1

0

0.1

γ C
V

,γ

Dzugutov Gaussian core

(a) (b)

FIG. 10. Plot of γCV
= (∂ ln T/∂ ln ρ)CV

estimated from fluctuations, for
(a) the Dzugutov system along the adiabat including ρ = 0.70, T = 0.70
and (b) the Gaussian core system along the adiabat including at ρ = 0.90, T
= 0.75, as functions of ρ, compared to γ .
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the adiabats but not on the CV -contours.

E. Relevance of adiabats versus CV contours

In our simulation studies of isomorphs, the procedure has
always been to use Eq. (5) to generate adiabats (straightfor-
ward, since an accurate estimate of γ is readily computed
from the W,U fluctuations) and then examine to what extent
the other isomorph-invariant quantities are actually invari-
ant along these curves. One could also generate CV contours
and check for invariance along them. While it is not obvi-
ous that adiabats are more fundamental, Rosenfeld proposed
that transport properties are in fact governed by the excess
entropy.50 Given the not insignificant difference between adi-
abats and CV -contours it is worth checking explicitly whether
measures of dynamics are more invariant along one versus
the other. This is done in Fig. 11 for the reduced diffusivity
D̃ ≡ (

ρ1/3√m/T
)
D. It is clear that by the this measure, the

dynamics are more invariant along adiabats than along CV -
contours, consistent with Rosenfeld’s theory. We note also
that the adiabats seem to be simpler than the CV -contours in
that the exponent γ varies less than the exponent γCV

. This
is true for the all the systems presented here including simple
and non-simple ones. This implies γ is more practical as a
liquid characteristic than γCV

and suggests that adiabats pro-
vide a more useful, and fundamental basis for describing the
phase diagram than CV -contours. In fact a (ρ, S) phase dia-
gram would be consistent with the traditional starting point of
statistical mechanics—a function U (S, V ) expressing the de-
pendence of internal energy on entropy and volume (though
typically the total entropy, not S, is considered).

VI. CONCLUSION

We have derived several exact results relating to
Roskilde-simple liquids (previously termed strongly corre-
lating liquids) in the form of fluctuation formulas for vari-
ous thermodynamic derivatives. These include the derivative
(with respect to ln ρ) of an arbitrary NVT averaged dynamical
variable along a configurational adiabat, Eq. (17), the deriva-
tive of CV along an adiabat, Eq. (22), the temperature deriva-
tive of γ itself on an isochore, Eq. (27), and the slope of con-
tours of CV in the (ln ρ, ln T) plane, Eq. (53). In addition to
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the exact formulas we have argued that when dγ /dρ is neg-
ative (positive) one expects that (∂CV /∂ρ)S is positive (neg-
ative) and that the slopes of CV -contours are greater (less)
than those of adiabats. This we have tested with two model
Roskilde-simple liquids, the Lennard-Jones fluid with dγ /dρ

< 0 and the Girifalco potential which has dγ /dρ < 0 at low
density but switches to dγ /dρ > 0 at high density. From this
argument emerged a claim, Eq. (38) equating the sign of the
temperature derivative of γ to the density derivative along
an adiabat for a wide class of liquids (wider than Roskilde-
simple liquids). Finally, we note that the data presented here
provide support for the use of the n(2) exponent, determined
purely by the pair potential, as a quick and convenient way to
estimate γ and its density dependence.
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APPENDIX A: DERIVATION OF EQ. (13)

As in Appendix A of Ref. 18, we use a discrete-state no-
tation for convenience, such that Ai is the value of observable
A in microstate i and the (configurational) partition function
is Z = ∑

iexp ( − βUi). We have(
∂ 〈A〉
∂ ln ρ

)
T

= 1

Z

∂
∑

i Ai exp(−βUi)

∂ ln ρ

− 1

Z2

∑
i

Ai exp(−βUi)
∂

∑
j exp(−βUj )

∂ ln ρ
(A1)

= 1

Z

∑
i

(
∂Ai

∂ ln ρ
exp(−βUi) + Ai exp(−βUi)(−β)

∂Ui

∂ ln ρ

)

−
∑

i Ai exp(−βUi)

Z2

∑
j

exp(−βUj )(−β)
∂Ui

∂ ln ρ
(A2)

=
〈

∂A

∂ ln ρ

〉
− β (〈AW 〉 − 〈A〉 〈W 〉) (A3)

=
〈

∂A

∂ ln ρ

〉
− β 〈�A�W 〉 . (A4)

In the second last step the definition of the virial for a
micro-configuration, Wi ≡ (∂Ui/∂ ln ρ) was used; the density
derivative is understood to mean that the reduced coordinates
are held fixed while the volume is changed.

APPENDIX B: DERIVATION OF EQ. (22)

Here we give the details of the derivation of the ex-
pression for the derivative of CV at constant S. Writing the
variance of U as 〈(�U)2〉 = 〈U2〉 − 〈U〉2 allows us to
use Eq. (17) to take the derivative of 〈U2〉 and Eq. (18) to

differentiate 〈U〉:(
∂

〈
(�U )2

〉
∂ ln ρ

)
S

=
〈

∂U 2

∂ ln ρ

〉
− β〈�(U 2)�(W − γU )〉 − 2 〈U 〉 〈W 〉 (B1)

= 〈2UW 〉 − β
〈
�(U 2)�(W − γU )

〉 − 2〈U 〉〈W 〉 (B2)

= 2〈�U�W 〉 − β〈�(U 2)�(W − γU )〉 (B3)

= 2γ 〈(�U )2〉 − β〈�(U 2)�(W − γU )〉, (B4)

where we have used Eq. (3) to write the covariance 〈�U�W 〉
in terms of the variance of U. Inserting this result into Eq. (21)
gives the relatively simple formula(

∂CV

∂ ln ρ

)
S

= −β3〈�(U 2)�(W − γU )〉 = −β3〈�(U 2)ε〉.
(B5)

We make one more change by writing U = 〈U〉 + �U, so that

�(U 2) = U 2 − 〈U 2〉 (B6)

= 〈U 〉2 + 2〈U 〉�U + (�U )2 − (〈U 〉2 + 〈(�U )2〉)
(B7)

= 2〈U 〉�U + (�U )2 − 〈(�U )2〉. (B8)

When this is correlated with ε = �W − γ�U , the first term
vanishes because of Eq. (10) and the last term vanishes be-
cause 〈ε〉 = 0. Thus 〈�(U2)ε〉 = 〈(�U)2ε〉 and we arrive at
Eq. (22).

APPENDIX C: GENERATING CONFIGURATIONAL
ADIABATS

Equation (5) indicates a general procedure for generating
adiabats: (1) evaluate γ from the fluctuations at the current
state point; (2) choose a small change in density, say of order
1% or less; (3) use Eq. (5) to determine the corresponding
change in temperature:

ρn+1 = ρn + δρ, (C1)

Tn+1 = Tn (ρn+1/ρn)γn . (C2)

We have used this method for the Girifalco system with
δρ = 0.005 for values of ρ between 0.4 and 0.5. For general-
ized Lennard-Jones systems there is now an analytic expres-
sion for the ρ-dependence of γ which allows large changes in
ρ, the so-called “long jump method”:32, 33

ρn+1 = ρn + δρ, (C3)

Tn+1 = Tnh(αn, ρn+1)/h(αn, ρn), (C4)



184506-13 Bailey et al. J. Chem. Phys. 139, 184506 (2013)

where the energy/temperature scaling function h(α, ρ) is de-
fined by (see Refs. 32 and 33; the normalization is such that
h(α, 1) = 1).

h(α, ρ) = αρ4 + (1 − α)ρ2. (C5)

Here α is a parameter which according to the theory
of isomorphs—i.e., assuming perfect isomorphs for LJ
systems—is a constant. More generally one may expect that
it is fixed for a given isomorph, but can vary weakly among
isomorphs, analogous to 
(S) in Eq. (31). In fact, since
γ = dln (h)/dln (ρ),32 there is a close connection between h(ρ)
and n(2); by identifying Eq. (31) with the logarithmic deriva-
tive of h(ρ) we find that the latter can be expressed generally
in terms of the curvature of the pair potential:

h(ρ) = ρ−2/3v′′(
(S)ρ−1/3), (C6)

making it clear how to include dependence on S in h(ρ). This
connection will be discussed in more detail elsewhere.42 At a
given density α can be evaluated via

α = (γ − 2)/(4ρ2 − 2 − γρ2 + γ ) (C7)

(at ρ = 1 this becomes simply γ /2 − 1).
Since the theory is not exact, and α determined this way

will also vary weakly along the isomorph, in order to get the
best determination of the adiabats we re-evaluate α at each
state point. It therefore also has an index n. We observe a sys-
tematic variation in α of at most 0.5% for a given adiabat, and
a few percent variation between adiabats. We have used the
long-jump formula for the LJ system with δρ = 0.05 for val-
ues of ρ between 0.8 and 1.4. We noticed more noise in the
data for the Girifalco system, but have not checked whether
this is due to not having a long-jump formula or to differ-
ences in effective sampling rate (because of different relax-
ation times) giving different statistical errors.

APPENDIX D: DERIVATION OF CV EXPONENT

The temperature derivative of CV , Eq. (44), is obtained
as follows:(

∂CV

∂ ln T

)
ρ

= − ∂

∂ ln β
(β2〈(�U )2〉) = −β

∂

∂β
(β2〈(�U )2〉) (D1)

= −2β2〈(�U )2〉 − β3 ∂

∂β
(〈U 2〉 − 〈U 〉2) (D2)

= −2β2〈(�U )2〉 − β3 ∂〈U 2〉
∂β

+ 2β2〈U 〉β ∂〈U 〉
∂β

(D3)

= −2β2〈(�U )2〉 − β3 ∂〈U 2〉
∂β

− 2β2〈U 〉T CV (D4)

= −2β2〈(�U )2〉 + β3〈(�(U 2)�U 〉 − 2β3〈U 〉〈(�U )2〉.
(D5)

In the last line Eq. (11) was used. We can simplify by using
Eq. (B8):(

∂CV

∂ ln T

)
ρ

= −2β2〈(�U )2〉 + β3(2〈U 〉〈(�U )2〉 + 〈(�U )3〉)

−2β3〈U 〉〈(�U )2〉 (D6)

= −2β2〈(�U )2〉 + β3〈(�U )3〉. (D7)

For the density derivative of CV , we have likewise,(
∂CV

∂ ln ρ

)
T

= β2

(
∂〈U 2〉
∂ ln ρ

)
T

− β22〈U 〉
(

∂〈U 〉
∂ ln ρ

)
T

. (D8)

Starting with the second term, using Eq. (13),(
∂〈U 〉
∂ ln ρ

)
T

= −β〈�W�U 〉 + 〈W 〉 (D9)

while the first gives, also using Eqs. (13) and (B8),(
∂〈U 2〉
∂ ln ρ

)
T

= −β〈�W�(U 2)〉 + 〈2UW 〉 (D10)

= −2β〈U 〉〈�W�U )〉 − β〈�W (�U )2)〉 + 2〈UW 〉.
(D11)

Combining the two terms then gives(
∂CV

∂ ln ρ

)
T

=−β32〈U 〉〈�U�W 〉 − β3〈�W (�U )2〉

+2β2〈UW 〉+ 2〈U 〉β3〈�W�U 〉−2〈U 〉β2〈W 〉
(D12)

= −β3〈�W (�U )2〉 + 2β2〈�U�W 〉 (D13)

which is Eq. (50). Now we can assemble the derivative of CV

along an arbitrary slope g (Eq. (43)),(
dCV

d ln ρ

)
[g]

= −β3〈�W (�U )2〉 + 2β2〈�U�W 〉

+g(−2β2〈(�U )2〉 + β3〈(�U )3〉) (D14)

= β2〈(�U )2〉(−β〈�W (�U )2〉/〈(�U )2〉 + 2γ

+g(−2 + β〈(�U )3〉/〈(�U )2〉)) (D15)

which can be rewritten as Eq. (51).

APPENDIX E: FLUCTUATION FORMULA
FOR THE DERIVATIVE OF γ

We include here, omitting the derivation, the fluctuation
formula for the derivative of γ with respect to ln ρ at constant
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S. The quantity X ≡ dW/d ln ρ is the hypervirial, which ap-
pears in fluctuation expressions for the bulk modulus.49(

∂γ

∂ ln ρ

)
S

= 1

〈(�U )2〉 (〈(�W )2〉 + 〈�U�X〉

−2γ 2〈(�U )2〉 − β〈�Uε2〉). (E1)

For IPL systems (and perfect correlating systems in general)
we have �X = γ�W = γ 2�U and ε ≡ 0, so that the deriva-
tive is zero.
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