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An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hy-
persurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is
derived by discretizing the geodesic stationarity condition and implementing the constant-potential-
energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-
precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained
if the force cutoff is smoothed and the two initial configurations have identical potential energy within
machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs
in order to compensate for the accumulation of numerical errors that eventually lead to “entropic
drift” of the potential energy towards higher values. A modification of the basic NVU algorithm is
introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also
eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU al-
gorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the
standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones
liquid. © 2011 American Institute of Physics. [doi:10.1063/1.3623585]

I. INTRODUCTION

This paper and its companion Paper II1 study NVU dy-
namics, i.e., dynamics that conserves the potential energy U

for a system of N classical particles at constant volume V .
NVU dynamics is deterministic and involves only the system’s
configurational degrees of freedom. NVU dynamics is charac-
terized by the system moving along a so-called geodesic curve
on the constant-potential-energy hypersurface � defined by

� = {(r1, . . . , rN ) ∈ R3N |U (r1, . . . , rN ) = U0} . (1)

Mathematically, � is a (3N − 1)-dimensional differentiable
manifold. Since it is imbedded in R3N , � has a natu-
ral Euclidean metric and it is thus a so-called Riemannian
manifold.2 The differential geometry of hypersurfaces is dis-
cussed in, for instance, Ref. 3.

A geodesic curve on a Riemannian manifold minimizes
the distance between any two of its points that are sufficiently
close to each other (the curve is characterized by realizing
the “locally shortest distance” between points). A geodesic is
defined by the property that for any curve variation keeping
the two end points RA and RB fixed, to lowest order the curve
length does not change, i.e.,

δ

∫ RB

RA

dl = 0 . (2)

Here, dl denotes the line element of the metric.
From a physical point of view, it is sometimes useful to

regard a geodesic as a curve on a given surface along which

a)Electronic mail: dyre@ruc.dk.

the system moves at constant velocity with zero friction. Such
motion means that at any time the force is perpendicular to the
surface, and because the force performs no work, the kinetic
energy is conserved. In this way, geodesic motion general-
izes Newton’s first law, the law of inertia, to curved surfaces.
The concept of geodesic motion is central in general relativ-
ity, where motion in a gravitational field follows a geodesic
curve in the four-dimensional curved space-time.4

A general motivation for studying NVU dynamics is the
following. Since basically all relevant information about a
system is encoded in the potential-energy function, it is in-
teresting from a philosophical point of view to study and
compare different dynamics relating to U (r1, . . . , rN ). The
“purest” of these dynamics does not involve momenta and
relates only to configuration space. NVU dynamics provides
such a dynamics. In contrast to Brownian dynamics, which
also relates exclusively to the configurational degrees of free-
dom, NVU dynamics is deterministic. NVU dynamics may be
viewed as an attempt to understand the dynamic implications
of the potential energy landscape’s geometry along the lines
of recent papers by Stratt and co-workers.5, 6

Our interest in NVU dynamics originated in recent results
concerning strongly correlating liquids and their isomorphs.
A liquid is termed strongly correlating if there is more than
90% correlation between its virial and potential energy ther-
mal equilibrium fluctuations in the NVT ensemble.7 The class
of strongly correlating liquids includes most or all van der
Waals and metallic liquids, whereas hydrogen-bonding, co-
valently bonded liquids, and ionic liquids are generally not
strongly correlating because competing interactions tend to
weaken the correlation. A liquid is strongly correlating if and
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only if it to a good approximation has “isomorphs” in its phase
diagram.8, 9 By definition two state points are isomorphic8 if
any two microconfigurations of the state points, which can
be trivially scaled into one another, have identical canoni-
cal probabilities; an isomorph is a curve in the phase dia-
gram for which any two pairs of state points are isomor-
phic. Only inverse-power-law liquids have exact isomorphs,
but simulations show that Lennard-Jones type liquids have
isomorphs to a good approximation.8 This is consistent with
these liquids being strongly correlating.7 Many properties are
invariant along an isomorph, for instance, the excess entropy,
the isochoric heat capacity, scaled radial distribution func-
tions, dynamic properties in reduced units, etc;8, 9 the reduced-
unit constant-potential-energy hypersurface �̃ is also invari-
ant along an isomorph.8 Given that several properties are in-
variant along a strongly correlating liquid’s isomorphs and
that �̃ is invariant as well, an obvious idea is that �̃’s invari-
ance is the fundamental fact from which all other isomorph
invariants follow. For instance, the excess entropy is the log-
arithm of the area of �̃, so the excess entropy’s isomorph in-
variance follows directly from that of �̃. In order to under-
stand the dynamic isomorph invariants from the �̃ perspec-
tive a dynamics is required that refers exclusively to �̃. One
possibility is diffusive dynamics, but a mathematically even
more elegant dynamics on a differentiable manifold is that
of geodesics. Although these considerations were our origi-
nal motivation, it should be emphasized that the concept of
geodesic motion on �̃ (or �) is general and can be applied to
any classical mechanical system, strongly correlating or not.

We are not the first to consider dynamics on the
constant-potential-energy hypersurface. In papers dating back
to 1986,10 Cotterill and Madsen proposed a deterministic
constant-potential-energy algorithm that is similar, but not
identical, to the basic NVU algorithm derived below. Their al-
gorithm was not discussed in relation to geodesic curves, but
aimed at providing an alternative way to understand vacancy
diffusion in crystals and, in particular, to make easier the
identification of energy barriers than via ordinary MD sim-
ulations. The latter property is not confirmed in the present
papers, however – in contrast, we find that NVU dynamics
in the thermodynamic limit becomes equivalent to standard
NVE dynamics (Paper II). Later, Scala et al. studied diffu-
sive dynamics on the constant-potential-energy hypersurface
�,11 focusing on the entropic nature of barriers by regarding
these as “bottlenecks.” This point was also made by Cotterill
and Madsen who viewed � as consisting of “pockets” con-
nected by thin paths, referred to as “tubes,” acting as entropy
barriers. Reasoning along similar lines, Stratt and co-workers
published in 2007 and 2010 three papers,5, 6 which considered
paths in the so-called potential-energy-landscape ensemble.
This novel ensemble is defined by including all configurations
with potential energy less than or equal to some potential en-
ergy U0. A geodesic in the potential-energy-landscape ensem-
ble consists of a curve that is partly geodesic on the constant-
potential-energy surface �, partly a straight line in the
space defined by U < U0.5 Wang and Stratt’s picture shifts
“perspective from finding stationary points on the potential
energy landscape to finding and characterizing the accessi-
ble pathways through the landscape. Within this perspective

pathways would be slow, not because they have to climb over
high barriers, but because they have to take a long and tortu-
ous route to avoid such barriers. . . .”5 Thus, the more “con-
voluted and labyrinthine” the geodesics are, the slower is the
dynamics.5- Apart from these three sources of inspiration to
the present work, we note that geodesic motion on differen-
tiable manifolds has been studied in several other contexts
outside of pure mathematics, see, e.g., Ref. 12.

The present paper derives and documents an algorithm
for NVU dynamics. In Sec. II, we derive the basic NVU al-
gorithm. By construction this algorithm is time reversible,
a feature that ensures a number of important properties.13, 14

Section III discusses how to implement the NVU algorithm
and tests improvements of the basic NVU algorithm designed
for ensuring stability; this is done by single-precision simu-
lations. This section arrives at the final NVU algorithm and
demonstrates that it conserves potential energy, step length,
and center-of-mass position in arbitrarily long simulations.
Section IV briefly investigates the sampling properties of the
NVU algorithm, showing that it gives results for the Lennard-
Jones liquid that are equivalent to those of standard NVE dy-
namics. Finally, Sec. V gives a few concluding comments. Pa-
per II compares NVU simulations to results for four other dy-
namics, concluding that NVU dynamics is a fully valid molec-
ular dynamics.

II. THE BASIC NVU ALGORITHM

For simplicity of notation, we consider in this paper only
systems of particles of identical masses (the Appendix of Pa-
per II generalizes the algorithm to systems of varying particle
masses). The full set of positions in the 3N -dimensional con-
figuration space is collectively denoted by R, i.e.,

R ≡ (r1, . . . , rN ) . (3)

Likewise, the full 3N -dimensional force vector is denoted by
F. This section derives the basic NVU algorithm for geodesic
motion on the constant-potential-energy hypersurface � de-
fined in Eq. (1), an algorithm that allows one to compute the
positions in step i + 1, Ri+1, from Ri−1 and Ri . Although a
mathematical geodesic on a differentiable manifold is usually
parameterized by its curve length,2 it is useful to think of a
geodesic curve on � as parameterized by time and we shall
refer to the steps of the algorithm as “time steps.”

Locally, a geodesic is the shortest path between any two
of its points. More precisely: (1) For any two points on a
Riemannian manifold the shortest path between them is a
geodesic; (2) the property of a curve being geodesic is locally
defined; (3) a geodesic curve has the property that for any
two of its points, which are sufficiently close to each other,
the curve gives the shortest path between them. A geodesic
may, in fact, be the longest distance between two of its points.
For instance, the shortest and the longest flight between two
cities on our globe both follow great circles – these are both
geodesics. In any case, the property of being geodesic is al-
ways defined by the curve length being stationary in the fol-
lowing sense: Small curve variations, which do not move the
curve’s end points, to lowest order do not change the curve
length (Eq. (2)).
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For motion on �, the constraint of constant poten-
tial energy is taken into account by introducing Lagrangian
multipliers. For each time step j the constraint U (Rj ) = U0

gives rise to a corresponding Lagrangian multiplier λj . Thus,
the stationarity condition Eq. (2) for the discretized curve
length

∑
j |Rj − Rj−1| subject to the constraint of constant

potential energy is

δ

⎛
⎝∑

j

|Rj − Rj−1| −
∑

j

λjU (Rj )

⎞
⎠ = 0 . (4)

Since |Rj − Rj−1| = √
(Rj − Rj−1)2 and the 3N -

dimensional force is given by Fj = −∂U/∂Rj , putting
to zero the variation of Eq. (4) with respect to Ri (i.e., the
partial derivative ∂/∂Ri) leads to

Ri − Ri−1

|Ri − Ri−1| − Ri+1 − Ri

|Ri+1 − Ri | + λiFi = 0 . (5)

To solve these equations we make the ansatz of constant dis-
placement length for each time step,

|Rj − Rj−1| ≡ l0 (all j ) . (6)

If the path discretization is thought of as defined by constant
time increments, Eq. (6) corresponds to constant velocity in
the geodesic motion. With this ansatz, Eq. (5) becomes

(Ri − Ri−1) + (Ri − Ri+1) + l0λiFi = 0 . (7)

If ai ≡ Ri − Ri−1 and bi ≡ Ri − Ri+1, Eq. (6) implies a2
i

= b2
i , i.e., 0 = a2

i − b2
i = (ai + bi) · (ai − bi). Since Eq. (7)

expresses that ai + bi is parallel to Fi , one concludes that Fi

is perpendicular to ai − bi = Ri+1 − Ri−1. This implies

Fi · Ri−1 = Fi · Ri+1 . (8)

Taking the dot product of each side of Eq. (7) with Fi one gets

Fi · (Ri − Ri−1) + Fi · (Ri − Ri+1) + l0λiF2
i = 0 , (9)

which via Eq. (8) implies

l0λi = −2
Fi · (Ri − Ri−1)

F2
i

. (10)

Substituting this into Eq. (7) and isolating Ri+1, we finally
arrive at

Ri+1 = 2Ri − Ri−1 − 2[Fi · (Ri − Ri−1)]Fi

F2
i

. (11)

This equation determines a sequence of positions; it will be
referred to as “the basic NVU algorithm.”

The derivation of the basic NVU algorithm is
completed by checking its consistency with the con-
stant step length ansatz Eq. (6): Rewriting Eq. (11) as
(Ri+1 − Ri) = (Ri − Ri−1) − 2[Fi · (Ri − Ri−1)]Fi/F2

i , we
get by squaring each side (Ri+1 − Ri)2 = (Ri − Ri−1)2

+ 4[Fi · (Ri − Ri−1)]2/F2
i − 4[Fi · (Ri − Ri−1)]2/F2

i = (Ri

− Ri−1)2. Thus, the solution is consistent with the ansatz.
Time reversibility of the basic NVU algorithm is checked

by rewriting Eq. (11) as follows:

Ri−1 = 2Ri − Ri+1 − 2[Fi · (Ri − Ri−1)]Fi

F2
i

, (12)

which via Eq. (8) implies

Ri−1 = 2Ri − Ri+1 − 2[Fi · (Ri − Ri+1)]Fi

F2
i

. (13)

Comparing to Eq. (11) shows that any sequence of configu-
rations generated by Eq. (11) . . . , Ri−1, Ri , Ri+1, . . . obeys
Eq. (11) in the time-reversed version . . . , Ri+1, Ri , Ri−1, . . ..
A more direct way to show that the basic NVU algorithm is
time-reversal invariant is to note that Eq. (5) is itself mani-
festly invariant if the indices i − 1 and i + 1 are interchanged.

The Appendix shows that the basic NVU algorithm is
symplectic, i.e., that it conserves the configuration-space vol-
ume element in the same way as NVE dynamics does. We fi-
nally consider potential-energy conservation in the basic NVU
algorithm. A Taylor expansion implies via Eq. (8) that

Ui+1 − Ui−1 = −Fi · (Ri+1 − Ri−1) + O
(
l3
0

) = O
(
l3
0

)
.

(14)
This ensures potential-energy conservation to a good approx-
imation if the discretization step is sufficiently small.

The “potential energy contour tracing” (PECT) algo-
rithm of Cotterill and Madsen10 is the following: Ri+1 = 2Ri

− Ri−1 − [Fi · (Ri − Ri−1)]Fi/F2
i . Except for a factor of 2

this is identical to the basic NVU algorithm. The importance
of this difference is apparent when it is realized that the PECT
algorithm implies Fi · (Ri+1 − Ri) = 0, whereas it does not
imply the time-reversed identity Fi · (Ri−1 − Ri) = 0. Thus,
the PECT algorithm is not time reversible.

We end this section by reflecting on what is the relation
between the NVU algorithm and continuous geodesic curves
on �. Can one expect that if the step length is decreased to-
wards zero, the discrete sequence of points traced out by the
algorithm converges to a continuous geodesic curve? The an-
swer is yes, as is clear from the current applied mathematics
literature.15 The literature deals with the analogous problem
of classical mechanics where, as is well known, Newton’s
second law of motion can be derived from the principle of
least action (Hamilton’s principle). This is a variational prin-
ciple. In the traditional approach, one first derives continuous
equations of motion from the variational principle, then dis-
cretizes these equations to allow for computer simulations.
Here, we first discretized the quantity subject to the varia-
tional principle (Eq. (4)) and only thereafter applied varia-
tional calculus. Euler himself first described discretization of
time in the action integral, thus obtaining discretized versions
of the Euler-Lagrange equations. There is now a large liter-
ature on this subject.15 During the last decade, in particular,
variational calculations applied after discretization have come
into focus in connection with, for instance, the development
of algorithms for the control of robots. The general consensus
is the following (we quote below from Ref. 16 that provides
an excellent summary of the situation): “The driving idea
behind this discrete geometric mechanics is to leverage the
variational nature of mechanics and to preserve this varia-
tional structure in the discrete setting . . . That is, if one de-
signs a discrete equivalent of the Lagrangian, then discrete
equations of motion can be easily derived from it by parallel-
ing the derivations followed in continuous case. In essence,
good numerical methods will come from discrete analogs to

Downloaded 12 Sep 2011 to 130.226.173.82. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



104101-4 Ingebrigtsen et al. J. Chem. Phys. 135, 104101 (2011)

0

(a) (b)

(c)

200 400 600 800 1000

Steps

-5.2272

-5.2269

-5.2266

-5.2263

-5.2260

-5.2257

-5.2254
U

 / 
N

0 2 4 6 8 10
-5.2272
-5.2269
-5.2266
-5.2263
-5.2260
-5.2257
-5.2254

0 200 400 600 800 1000

Steps

-5.22635

-5.22630

-5.22625

-5.22620

-5.22615

-5.22610

-5.22605

-5.22600

U
 / 

N

0 2 4 6 8 10
-5.226304
-5.226300
-5.226296
-5.226292
-5.226288
-5.226284

0.0 2.0×10
-6

4.0×10
-6

6.0×10
-6

8.0×10
-6

1.0×10
-5

1.2×10
-5

l
0
λ

0

5×10
5

1×10
6

P
ro

ba
bi

li
ty

 d
en

si
ty

FIG. 1. (a) Evolution of the potential energy U according to the basic NVU algorithm (Eq. (17)) started from two consecutive configurations of an NVE
simulation. The inset shows a snapshot of the first ten integration steps where lines connect the data points; clearly, the system jumps distinctly between
two potential-energy hypersurfaces. (b) Evolution of U started from two configurations with a very small potential energy difference. The algorithm still
jumps between two potential-energy hypersurfaces. (c) Probability distribution of the Lagrangian multiplier times the length l0, l0λ of Eq. (10), obtained from
simulations over 2.5 × 106 steps. The green distribution corresponds to (a), the blue distribution to (b).

the Euler-Lagrange equations – equations that truly derive
from a variational principle . . . Results have been shown to
be equal or superior to all other types of integrators for sim-
ulations of a large range of physical phenomena, making this
discrete geometric framework both versatile and powerful.”

III. TESTING AND IMPROVING THE BASIC
NVU ALGORITHM

This section discusses the numerical implementation of
the basic NVU algorithm and how to deal with accumulat-
ing round-off errors that arise for very long simulations. The
model system studied is the standard Lennard-Jones (LJ) liq-
uid with N = 1024 particles. Recall that the LJ pair potential
v(r) is given by

v(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

. (15)

Here, ε sets the energy scale and σ sets the length scale;
henceforth, the unit system is adopted in which these quanti-
ties are both unity. All simulations except those of Fig. 5 refer
to the state point with density 0.85 and temperature 0.7. Ini-
tial configurations were taken from NVE simulations of this

state point. Unless otherwise specified the forces and their
derivative were adjusted to be continuous via smoothing from
a value just below the cutoff distance rc to rc. We refer to
this as a “smoothed force potential.” The cutoff distance was
chosen as the standard LJ cutoff rc = 2.5σ . The simulations
were performed using periodic boundary conditions. In order
to easier test the numerical stability of the NVU algorithm,
simulations were performed in single precision.17

A. Implementing the basic NVU algorithm

We rewrite Eq. (11) into a leap-frog version by introduc-
ing new variables defined by

�i+1/2 ≡ Ri+1 − Ri . (16)

In terms of these variables the basic NVU algorithm is

�i+1/2 = �i−1/2 − 2(Fi · �i−1/2)Fi

F2
i

Ri+1 = Ri + �i+1/2 . (17)

Equations (17) are formally equivalent to Eq. (11). Numer-
ically, however, they are not equivalent and – as is also the
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FIG. 2. Evolution of |(U − U (0))/U (0)| for a simulation using the basic
NVU algorithm. The red curve gives results from a simulation where the
potential is cut and shifted at r = 2.5σ , the black curve gives results for a
smoothed force potential.

case for standard NVE dynamics – the leap-frog version is
preferable because it deals with position changes.18

Figure 1(a) shows the potential energy as a function
of time-step number when the two initial configurations are
taken from consecutive configurations of an NVE simulation.
The system’s potential energy jumps every second step, jump-
ing between two distinct values (inset). This is also reflected
in the distribution of the quantity l0λi shown in green in Fig.
1(c). A priori one would expect a Gaussian single-peak distri-
bution of l0λi , but the distribution has two peaks. What causes
the potential energy to zig-zag in an algorithm constructed to
conserve the potential energy? The answer is hinted at in Eq.
(14) according to which the NVU algorithm implies energy
conservation to a good accuracy, but only every second step.
Thus, if the two initial configurations do not have identical po-
tential energy, the potential energy will zig-zag between two
values. Figure 1(b) shows that even if a simulation is initi-
ated from two configurations with very close potential ener-
gies, the zig-zag phenomenon persists, though now on a much
smaller scale.

There are further numerical issues that affect the stabil-
ity of the basic NVU algorithm. In Fig. 2, the evolution of
the potential energy is given for a long simulation, which
also includes data from simulations using a non-smoothed
force potential. Better numerical stability is clearly obtained
for the smoothed force potential (black curve), but smooth-
ing does not ensure constant potential energy and absolute
stability.

B. Improving the algorithm to conserve potential
energy and step length indefinitely

Subsection III A showed that using a smoothed force po-
tential and ensuring that the two starting configurations have
identical potential energy within machine precision, a fairly
stable algorithm is arrived at. Nevertheless, absolute stability
is not obtained. This is illustrated in Fig. 3(a), which shows
that the potential energy for a system with a smoothed force
potential over five million time steps still exhibits a slight
“entropic drift” (red curve). By entropic drift, we mean the
drift due to round-off errors, a drift that unavoidably takes
the system to higher energies because there are many more
such states – an entropic effect. Figure 3(b) shows that also
the step length is not conserved. Both problems are caused by
the accumulation of round-off errors. These problems are less
severe if one switches to double precision, of course, but for
long simulations entropic drift eventually sets in (for billions
of time steps).

We would like to have an algorithm that is absolutely sta-
ble, i.e., one that does not allow for any long-time drift of the
quantities which the basic NVU algorithm was constructed to
conserve: the potential energy, the step length, and the center
of mass (CM) position (just as in standard NVE dynamics the
CM position is exactly conserved in the basic NVU algorithm
Eq. (11) because the forces sum to zero due to the transla-
tional invariance of the potential energy: U (r1 + r0, . . . , rN

+ r0) = U (r1, . . . , rN )).
Drift of the CM position is trivially eliminated by ad-

justing the particle displacements according to �rn = �rn

− ∑
m �rm/N , e.g., every 100th time step. This correction
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FIG. 3. (a) Evolution of U with and without the numerical stabilization (Eq. (20)): The red curve gives results using the basic NVU algorithm Eq. (17) with
two identical initial potential energies and smoothed force potential. The black curve gives simulation results under the same conditions using the final NVU
algorithm (Eq. (20)). (b) Evolution of the step length for the same simulations.
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corresponds to setting to zero the total momentum of the sys-
tem in an NVE simulation.

Robust potential energy conservation is obtained by
adding a term that is zero if the potential energy equals the tar-
get potential energy U (this quantity was previously denoted
by U0, but to avoid confusion with the time step index we drop
the subscript zero),

�i+1/2 = �i−1/2 +
(

− 2Fi · �i−1/2 + Ui−1 − U
)

Fi

F2
i

.

(18)
To show that this modification of the NVU algo-
rithm prevents drift of the potential energy we take
the dot product of each side of Eq. (18) with Fi ,
leading to Fi · �i+1/2 = −Fi · �i−1/2 + Ui−1 − U or
Fi · (�i+1/2 + �i−1/2) = Ui−1 − U. Since Fi · (�i+1/2

+ �i−1/2) = Fi · (Ri+1 − Ri−1) = −(Ui+1 − Ui−1) + O(l3
0),

this implies

Ui+1 = U + O
(
l3
0

)
. (19)

Thus, entropic drift has been eliminated and the potential en-
ergy is conserved indefinitely except for small fluctuations.

We next address the problem of conserving step length.
This is ensured by the following modification of the algo-
rithm:

�i+1/2 = l0
�i−1/2 + (−2Fi · �i−1/2 + Ui−1 − U)Fi/F2

i∣∣�i−1/2 + (−2Fi · �i−1/2 + Ui−1 − U)Fi/F2
i

∣∣ .
(20)

Equation (20) gives the final NVU algorithm (occasionally for
brevity: “the NVU algorithm,” in contrast to Eq. (11) that is
referred to as “the basic NVU algorithm”).

In simulations, the NVU algorithm is implemented as fol-
lows. The target potential energy U is chosen from an NVE
or an NVT simulation at the relevant state point. The step
length l0 is chosen according to the accuracy aimed for. Sup-
pose the quantities Ri , �i−1/2, and Ui−1 are given. From
Ri the forces Fi are calculated. From �i−1/2, Fi , and Ui−1

the quantity �i+1/2 is calculated via Eq. (20). Finally, the

positions are updated via Ri+1 = Ri + �i+1/2, and the poten-
tial energy is updated via Ui = U (Ri).

By construction the NVU algorithm Eq. (20) ensures con-
stant step length,

|�i+1/2| = l0, (21)

but is the potential energy still conserved for arbitrarily
long runs? If the denominator of Eq. (20) is denoted by
Di , taking the dot product of each side of this equation
with Fi leads to Fi · �i+1/2 = (l0/Di)[−Fi · �i−1/2 + Ui−1

− U]. Writing l0/Di ≡ 1 + δi in which δi = O(lp0 ) with p

≥ 1, we get Fi · (�i+1/2 + �i−1/2) = δi[−Fi · �i−1/2]
+ (1 + δi)[Ui−1 − U]. Thus, since Fi · (�i+1/2 + �i−1/2)
= Ui−1 − Ui+1 + O(l3

0) and Fi · �i−1/2 = Ui−1 − Ui

+ O(l2
0), we get U − Ui+1 + O(l3

0) = δi[Ui − U + O(l2
0)].

This implies again

Ui+1 = U + O
(
l3
0

)
. (22)

In summary, for simulations of indefinite length the NVU
algorithm Eq. (20) ensures constant step length and avoids en-
tropic drift of the potential energy. Figure 3(a) shows the evo-
lution of the potential energy using the basic NVU algorithm
(red) and the final NVU algorithm (black), Fig. 3(b) shows the
analogous step length evolution. Figure 4(a) shows that the
distribution of the Lagrangian multiplier is only slightly af-
fected by going from the basic (red) to the final (black) NVU
algorithm. Figure 4(b) shows the evolution of δi in the final
NVU algorithm, which as expected is close to zero.

We remind the reader that the modifications of the algo-
rithm were introduced to compensate for the effects of ac-
cumulating random numerical errors for very long runs, and
that the modifications introduced in the final NVU algorithm
Eq. (20) vanish numerically in the mean. The prize paid for
stabilizing the basic NVU algorithm is that the final NVU al-
gorithm is not rigorously time reversible. In view of the fact
that the improvements introduced to ensure stability lead to
very small corrections, the (regrettable) fact that the correc-
tions violate time reversibility is probably not important.
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FIG. 5. Radial distribution functions g(r) for a single-component Lennard-Jones system at the following state points: (a) T = 2.32 and ρ = 0.85; (b) T = 1.1
and ρ = 0.427; (c) the crystal at T = 0.28 and ρ = 0.85. The black curves show results from NVE simulations, the red dots show results from NVU simulations
(Eq. (20)).

IV. SAMPLING PROPERTIES OF
THE NVU ALGORITHM

In order to investigate whether the NVU algorithm gives
physically reasonable results we compare results from NVU
and NVE simulations for the average of a quantity that de-
pends only on configurational degrees of freedom. This is
done in Fig. 5, which shows the radial distribution function
g(r) at three state points. The red dots give NVU simula-
tion results, the black curve gives NVE simulation. Clearly,
the two algorithms give the same results. This finding is con-
sistent with the conjecture that the NVU algorithm probes
all points on � with equal probability. Note that this is not
mathematically equivalent to conjecturing that the NVU algo-
rithm probes the configuration space microcanonical ensem-
ble, which has equal probability density everywhere in a thin
energy shell between a pair of close-by constant-potential-
energy manifolds. The latter distribution would imply an en-
semble density of points on � inversely proportional to the
length of the gradient of U (R) (the force), but this distribution
cannot be the correct equilibrium distribution because the ba-
sic NVU algorithm Eq. (11) is invariant to local scaling of the
force. In the thermodynamic limit, however, the length of the
force vector becomes almost constant and the difference be-

tween the configuration-space microcanonical ensemble and
the � equal-measure ensemble becomes insignificant.

Paper II details a comparison of NVU dynamics to four
other dynamics, including two stochastic dynamics. Here,
simulation and theory lead to the conclusion that NVU and
NVE dynamics are equivalent in the thermodynamic limit.

V. CONCLUDING REMARKS

An algorithm for geodesic motion on the constant-
potential-energy hypersurface has been developed (Eq. (20)).
Analytical arguments and single-precision simulations show
that this algorithm, in conjunction with compensation for
center-of-mass drift, is absolutely stable in the sense that po-
tential energy, step length, and center-of-mass position are
conserved for indefinitely long runs. The algorithm repro-
duces the NVE radial distribution function of the LJ liquid,
strongly indicating that correct configuration-space averages
are arrived at in NVU dynamics.

Although NVU dynamics has no kinetic energy provid-
ing a heat bath, it does allow for a realistic description of
processes that are unlikely because they are thermally acti-
vated with energy barriers that are large compared to kBT

(Paper II). In NVU dynamics, whenever a molecular
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rearrangement requires excess energy to accumulate locally,
this extra energy is provided by the surrounding configura-
tional degrees of freedom. These provide a heat bath in much
the same way as the kinetic energy provides a heat bath for
standard Newtonian NVE dynamics.

Paper II compares the dynamics of the Kob-Andersen
binary Lennard-Jones liquid simulated by the NVU al-
gorithm and four other algorithms (NVE, NVT, diffusion
on �, Monte Carlo dynamics), concluding that results
are equivalent for the slow degrees of freedom. Paper II
further argues from simulations and analytical arguments
that NVU dynamics becomes equivalent to NVE dynamics
as N → ∞.
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APPENDIX: PROOF THAT THE BASIC NVU
ALGORITHM IS SYMPLECTIC

This Appendix proves that the basic NVU algorithm con-
serves the configuration-space volume element on the hyper-
surface � in the same sense as the NVE algorithm conserves
the configuration-space volume element. We view the basic
NVU algorithm (Eq. (11)),

Ri+1 = 2Ri − Ri−1 − 2Fi · (Ri − Ri−1)

F2
i

Fi , (A1)

as a mapping of R6N into itself. In the 6N -dimensional
configuration space of subsequent time-step pairs Si

≡ {Ri , Ri−1}, the NVU algorithm is

Si → Si+1 = {Ri+1, Ri}

= {2Ri − Ri−1 − 2Fi · (Ri − Ri−1)

F2
i

Fi , Ri}.

(A2)

The Jacobian of this map J(Si → Si+1) is given by

|J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 − 2
∂

Fi (Ri−Ri−1)

F2
i

Fx1,i

∂x1,i
−2

∂
Fi (Ri−Ri−1)

F2
i

Fx1 ,i

∂x2,i
. . . −1 + 2

∂
Fi Ri−1

F2
i

Fx1 ,i

∂x1,i−1
2

∂
Fi Ri−1

F2
i

Fx1 ,i

∂x2,i−1
. . .

−2
∂

Fi (Ri−Ri−1)

F2
i

Fx2,i

∂x1,i
2 − 2

∂
Fi (Ri−Ri−1)

F2
i

Fx2 ,i

∂x2,i
. . . 2

∂
Fi Ri−1

F2
i

Fx2 ,i

∂x1,i−1
−1 + 2

∂
Fi Ri−1

F2
i

Fx2 ,i

∂x2,i−1
. . .

...
...

...
...

1 0 . . . 0 0 . . .

0 1 . . . 0 0 . . .

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A3)

This may be regarded as a two-by-two block matrix consisting of blocks A, B, C, D. The determinant of this block matrix is
|J| = |AD − BC| = | − BC| = (−1)M |B|, giving (where the index i is dropped for brevity and M = 3N )

|J| = (−1)M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 + 2
F 2

x1
F2 2

Fx2 Fx1
F2 2

Fx3 Fx1
F2 2

Fx4 Fx1
F2 . . .

2
Fx1 Fx2

F2 −1 + 2
F 2

x2
F2 2

Fx3 Fx2
F2 2

Fx4 Fx2
F2 . . .

2
Fx1 Fx3

F2 2
Fx2 Fx3

F2 −1 + 2
F 2

x3
F2 2

Fx4 Fx3
F2 . . .

2
Fx1 Fx4

F2 2
Fx2 Fx4

F2 2
Fx3 Fx4

F2 −1 + 2
F 2

x4
F2 . . .

...
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)M (±1). (A4)
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Defining the unit-length vector along the direction of the
force vector n, the last equality of Eq. (A4) follows
from B = −1 + 2n · nT ⇒ B2 = 1 + 4n · nT − 4n · nT = 1.
Since |B|2 = |B2| = 1, one has |B| = ±1. Thus, the volume
element transforms as

dRidRi−1 = dRi+1dRi . (A5)

This means that the basic NVU algorithm conserves the vol-
ume element in the 6N -dimensional configuration space, i.e.,
that the algorithm is symplectic just as the NVE algorithm is.
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