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We show that a number of model liquids at fixed volume exhibit strong correlations between
equilibrium fluctuations of the configurational parts of �instantaneous� pressure and energy. We
present detailed results for 13 systems, showing in which systems these correlations are significant.
These include Lennard-Jones liquids �both single- and two-component� and several other simple
liquids, neither hydrogen-bonding liquids such as methanol and water, nor the Dzugutov liquid,
which has significant contributions to pressure at the second nearest neighbor distance. The
pressure-energy correlations, which for the Lennard-Jones case are shown to also be present in the
crystal and glass phases, reflect an effective inverse power-law potential dominating fluctuations,
even at zero and slightly negative pressure. An exception to the inverse power-law explanation is a
liquid with hard-sphere repulsion and a square-well attractive part, where a strong correlation is
observed, but only after time averaging. The companion paper �N. P. Bailey et al., J. Chem. Phys.
129, 184508 �2008�� gives a thorough analysis of the correlations, with a focus on the
Lennard-Jones liquid, and a discussion of some experimental and theoretical consequences. © 2008
American Institute of Physics. �DOI: 10.1063/1.2982247�

I. INTRODUCTION

Physicists are familiar with the idea of thermal fluctua-
tions in equilibrium. They also know how to extract useful
information from them, using linear response theory.1–4

These methods started with Einstein’s observation that the
specific heat in the canonical ensemble is determined by the
magnitude of energy fluctuations. In any thermodynamic sys-
tem some variables are fixed and some fluctuate. The mag-
nitude of the variances of the latter, as well as their mutual
covariances, determines the thermodynamic “response”
parameters.1 For example, in the canonical �NVT� ensemble,
pressure p and energy E fluctuate; the magnitude of pressure
fluctuations is related to the isothermal bulk modulus
KT�−V��p /�V�T, that of the energy fluctuations to the spe-
cific heat at constant volume cV�T��S /�T�V, while the co-
variance ��p�E� is related4 to the thermal pressure coeffi-
cient �V���p /�T�V. If the latter is nonzero, it implies a
degree of correlation between pressure and energy fluctua-
tions. There is no obvious reason to suspect any particularly
strong correlation, and to the best of our knowledge none has
ever been reported. However, in the course of investigating
the physics of highly viscous liquids by computer simulation,
we noted strong correlations between pressure and energy
equilibrium fluctuations in several model liquids, also in the
high temperature, low-viscosity state. These included the
most studied of all computer liquids, the Lennard-Jones sys-
tem. Surprisingly, these strong correlations survive crystalli-
zation, and they are also present in the glass phase. “Strong”
here and henceforth means a correlation coefficient of order

0.9 or larger. In this paper we examine several model liquids
and detail which systems exhibit strong correlations and
which do not. In the companion paper5 �referred to as Paper
II� we present a detailed analysis of the correlations for the
single-component Lennard-Jones �SCLJ� system, and discuss
some consequences.

Specifically, the fluctuations that are in many cases
strongly correlated are those of the configurational parts of
pressure and energy. The �instantaneous� pressure p and en-
ergy E have
contributions both from particle momenta and positions as
follows:

p = NkBT�p1, . . . ,pN�/V + W�r1, . . . ,rN�/V ,

�1�
E = K�p1, . . . ,pN� + U�r1, . . . ,rN� ,

where K and U are the kinetic and potential energies, respec-
tively. Here T�p1 , . . . ,pN� is the “kinetic temperature,”4 pro-
portional to the kinetic energy per particle. The configura-
tional contribution to pressure is the virial W, which is
defined4 by

W = −
1

3�
i

ri · �ri
U , �2�

where ri is the position of the ith particle. Note that W has
dimension energy. For a pair interaction we havea�Electronic mail: nbailey@ruc.dk.
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U pair = �
i�j

v�rij� , �3�

where rij is the distance between particles i and j and v�r� is
the pair potential. The expression for the virial �Eq. �2��
becomes4

Wpair = −
1

3�
i�j

rijv��rij� = −
1

3�
i�j

w�rij� , �4�

where for convenience we define

w�r� � rv��r� . �5�

Figure 1�a� shows normalized instantaneous values of p
and E, shifted and scaled to have zero mean and unit vari-
ance, as a function of time for the standard SCLJ liquid,
while Fig. 1�b� shows the corresponding fluctuations of W
and U. We quantify the degree of correlation by the standard
correlation coefficient R, defined by

R =
��W�U�

	���W�2�	���U�2�
. �6�

Here the angle brackets � � denote thermal averages while �
denotes deviation from the average value of the given quan-
tity. The correlation coefficient is ensemble dependent, but
our main focus—the R→1 limit—is not. Most of the simu-
lations reported below were carried out in the NVT ensemble.
Another important characteristic quantity is the “slope” �,
which we define as the ratio of standard deviations as fol-
lows:

� �
	���W�2�
	���U�2�

. �7�

Considering the “total” quantities, p and E �Fig. 1�a��, there
is some correlation; the correlation coefficient is 0.70. For
the configurational parts, W and U, on the other hand �Fig.
1�b��, the degree of correlation is much higher, R=0.94 in
this case. Another way to exhibit the correlation is a scatter
plot of W against U, as shown in Fig. 2�a�.

Is this correlation surprising? Actually, there are some
interatomic potentials for which there is a 100% correlation

FIG. 1. �Color online� Equilibrium fluctuations of �a� pressure p and energy
E and �b� virial W and potential energy U, in a single-component Lennard-
Jones system simulated in the NVT ensemble at �=34.6 mol / l and T
=80 K �argon units�. The time-averaged pressure was close to zero
�1.5 MPa�. The correlation coefficient R between W and U is 0.94, whereas
the correlation coefficient is only 0.70 between p and E. Correlation coeffi-
cients were calculated over the total simulation time �10 ns�.

FIG. 2. �Color online� �a� Scatter plot of instantaneous virial W and poten-
tial energy U from the simulation of Fig. 1. The dashed line is a guide to the
eyes, with a slope determined by the ratio of standard deviations of W and U
�Eq. �7��. �b� Example of a system with almost no correlation between W
and U: TIP5P water at T=12.5 °C and density of 1007.58 kg /m3 �NVT�.
This system has Coulomb, in addition to Lennard-Jones, interactions.
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between virial and potential energy. If we have a pair poten-
tial of the form v�r��r−n, an inverse power law, then w�r�
=−nv�r� and Wpair= �n /3�Upair, holds exactly. In this case the
correlation is 100% and �=n /3.

Conversely, suppose a system is known to be governed
by a pair potential and that there is 100% correlation be-
tween W and U. We can write both U and W at any given
time t as integrals over the instantaneous radial distribution
function defined4 as

g�r,t� �
2

N�
�
i�j

��r − rij�t��/�4�r2� , �8�

from which

U�t� =
N

2
�


0

	

dr4�r2g�r,t�v�r� �9�

and

W�t� = −
N

6
�


0

	

dr4�r2g�r,t�w�r� . �10�

Here the factor of 1
2 is to avoid double counting, and �

=N /V is the number density. 100% correlation means that
W�t�=�U�t� holds for arbitrary g�r , t� �a possible additive
constant could be absorbed into the definition of U�. In par-
ticular, we could consider g�r , t�=��r−r0�.6 Substituting this
into the above expressions, the integrals go away and we find
w�r0�=−3�v�r0�. Since r0 was arbitrary, v��r�=−3�v�r� /r,
which has the solution v�r��r−3�. This connection between
an inverse power-law potential and perfect correlations sug-
gests that strong correlations can be attributed to an effective
inverse power-law potential, with exponent given by three
times the observed value of �. This will be detailed in Paper
II, which shows that while this explanation is basically cor-
rect, matters are somewhat more complicated than this. For
instance, the fixed volume condition, under which the strong
correlations are observed, imposes certain constraints on
g�r , t�.

The celebrated Lennard-Jones potential is given7 by

vLJ�r� = 4
���

r
12

− ��

r
6� . �11�

One might think that in the case of the Lennard-Jones poten-
tial the fluctuations are dominated by the repulsive r−12 term,
but this naive guess leads to a slope of 4, rather than the 6.3
seen in Fig. 2�a�. Nevertheless the observed correlation and
the above mentioned association with inverse power-law po-
tentials suggest that an effective inverse power-law descrip-
tion �involving short distances�, with a more careful identi-
fication of the exponent, may apply. In fact, the presence of
the second, attractive, term increases the steepness of the
repulsive part, thus increasing the slope of the correlation, or
equivalently the effective inverse power-law exponent �Fig.
3�. Note the distinction between repulsive term and repulsive
part of the potential: The latter is the region where v�r� has a
negative slope; thus, the region r�rm �rm being the distance
where the pair potential has its minimum, 21/6� for vLJ�. This
region involves both the repulsive and attractive terms �see

Fig. 3, which also illustrates the approximation of the repul-
sive part by a power law with exponent 18�. The same divi-
sion was made by Weeks, Chandler, and Andersen in their
noted paper of 1971,8 in which they showed that the thermo-
dynamic and structural properties of the Lennard-Jones fluid
were dominated by the repulsive part at high temperatures
for all densities, and also at low temperatures for high den-
sities. Ben-Amotz and Stell9 noted that the repulsive core of
the Lennard-Jones potential may be approximated by an in-
verse power law with n�18–20. The approximation by an
inverse power law may be directly checked by computing the
potential and virial with an inverse power-law potential for
configurations drawn from actual simulations using the
Lennard-Jones potential. The agreement �apart from additive
constants� is good; see Paper II.

Consider now a system with different types of pair inter-
actions, for example, a binary Lennard-Jones system with
AA, BB, and AB interactions, or a hydrogen-bonding system
modeled via both Lennard-Jones and Coulomb interactions.
We can write arbitrary deviations of U and W from their
mean values, denoted �U and �W, as a sum over types
�indexed by t; sums over pairs of a given type are implicitly
understood� as follows:

�U = �
t

�Ut, �W = �
t

�Wt. �12�

Now, supposing there is near-perfect correlation for the indi-
vidual terms with corresponding slopes �t, we can rewrite
�W as

�W = �
t

�t�Ut. �13�

If the �t are all more or less equal to a single value �, then
this can be factored out and we get �W���U. Thus the
existence of different Lennard-Jones interactions in the same
system does not destroy the correlation, since they have �t

�6. On the other hand the slope for Coulomb interaction,
which as an inverse power law has perfect W, U-correlations,
is 1 /3, so we cannot expect overall strong correlation in this
case �Fig. 2�b��. Indeed such reasoning also accounts for the

FIG. 3. �Color online� Illustration of the “effective inverse power law”
chosen in this case to match the Lennard-Jones potential and its first two
derivatives at the point r=�. The vertical line marks the division into the
repulsive and attractive parts of the Lennard-Jones potential.
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reduction of correlation when the total pressure and energy
are considered: �E=�U+�K, while �for a large atomic sys-
tem� V�p=��U+ �2 /3��K. The fact that � is �for the
Lennard-Jones potential� quite different from 2 /3 implies
that the p, E-correlation is significantly weaker than that of
W, U �Fig. 1�. Even in cases of unequal slopes, however,
there can be circumstances under which one kind of term,
and therefore one slope, dominates the fluctuations. In this
case strong correlations will be observed. Examples include
the high-temperature limits of hydrogen-bonded liquids �Sec.
III D� and the time-averaged �total� energy and pressure in
viscous liquids �Paper II�.

Some of the results detailed below were published pre-
viously in letter form;10 the aim of the present contribution is
to make a comprehensive report covering more systems,
while Paper II contains a detailed analysis and discusses ap-
plications. In the following section, we describe the systems
simulated. In Sec. III we present the results for all the sys-
tems investigated, in particular, the degree of correlation
�correlation coefficient R� and the slope. Section IV gives a
summary.

II. SIMULATED SYSTEMS

A range of simulation methods, thermodynamic en-
sembles, and computational codes were used. One reason for
this was to eliminate the possibility that strong correlations
are an artifact of using a particular ensemble or code. In
addition, no code can simulate the full range of systems pre-
sented. Most of the data we present are from molecular dy-
namics �MD� simulations, although some are from Monte
Carlo11 �MC� and event-driven12 �ED� simulations. Most of
the MD simulations �and of course all MC simulations�, had
fixed temperature �NVT�, while some had fixed total energy
�NVE�. Three MD codes were used: GROMACS �GRO�,13,14

ASAP �ASAP�,15 and DIGITALMATERIAL �DM�.16 Homemade
�HM� codes were used for the MC and ED simulations.

We now list the 13 systems studied, giving each a code
name for future reference. The systems include monatomic
systems interacting with pair potentials, binary atomic sys-
tems interacting with pair potentials, molecular systems con-
sisting of Lennard-Jones particles joined rigidly together in a
fixed configuration �here the Lennard-Jones interaction mod-
els the van der Waals forces�, molecular systems that have
Coulomb as well as Lennard-Jones interactions, metallic sys-
tems with a many-body potential, and a binary system inter-
acting with a discontinuous “square-well” potential. Included
with each system is a list specifying which simulation meth-
od�s�, which ensemble�s�, and which code�s� were used
�semicolons separate the method�s� from the ensemble�s� and
the ensemble�s� from the code�s��. Details of the potentials
are given in Appendix A.

CU: Pure liquid Cu simulated using the many-body po-
tential derived from effective medium theory �EMT�;17,18

�MD; NVE; ASAP�.
DB: Asymmetric “dumbbell” molecules19 consisting of

two unlike Lennard-Jones spheres connected by a rigid bond;
�MD; NVT; GRO�.

DZ: The potential introduced by Dzugutov20 as a candi-

date for a monatomic glass-forming system. Its distinguish-
ing feature is a peak in v�r� around 1.5�, after which it
decays exponentially to zero at a finite value of r; �MD;
NVT, NVE; DM�.

EXP: A system interacting with a pair potential with ex-
ponential repulsion and a van der Waals attraction; �MC;
NVT; HM�.

KABLJ: The Kob–Andersen binary Lennard-Jones
liquid;21 �MD; NVT, NVE; GRO, DM�.

METH: The GROMOS �Ref. 22� three-site model for
methanol; �MD; NVT; GRO�.

MGCU: A model of the metallic alloy Mg85Cu15 using
an EMT-based potential;23 �MD; NVE; ASAP�.

OTP: A three-site model of the fragile glass-former
orthoterphenyl �OTP�;24 �MD; NVT; GRO�.

SCLJ: The standard single-component Lennard-
Jonessystem with the interaction given in Eq. �11�; �MD,
MC; NVT, NVE; GRO, DM�.

SPC/E: The SPC/E model of water;25 �MD; NVT; GRO�.
SQW: A binary model with a pair interaction consisting

of an infinitely hard core and an attractive square well;12,26

�ED; NVE; HM�.
TIP5P: A five-site model for liquid water, which repro-

duces the density anomaly;27 �MD; NVT; GRO�.
TOL: A seven-site united-atom model of toluene; �MD;

NVT; GRO�.
The number of particles �atoms or molecules� was in the

range 500–2000. Particular simulation parameters �N ,� ,T,
duration of simulation� are given when appropriate in
Sec. III.

III. RESULTS

A. The standard single-component
Lennard-Jones system

SCLJ is the system we have most completely investi-
gated. W ,U-plots are shown for a range of thermodynamic
state points in Fig. 4. Here the ensemble was NVT with N
=864, and each simulation consisted of a 10 ns run taken
after 10 ns of equilibration; for all SCLJ results so-called
“argon” units are used ��=0.34 nm, 
=0.997 kJ /mol�. Each
elongated oval in Fig. 4 is a collection of W ,U pairs for a
given state point. Varying temperature at fixed density moves
the oval parallel to itself, following an almost straight line as
indicated by the dashed lines. Different densities correspond
to different lines, with almost the same slope. In a system
with a pure inverse power-law interaction, the correlation
would be exact, and moreover the data for all densities
would fall on the same straight line �see the discussion im-
mediately after Eq. �5��. Our data, on the other hand, show a
distinct dependence on volume, but for a given volume, be-
cause of the strong correlation, the variation in W is almost
completely determined by that of U.

Values of correlation coefficient R for the state points of
Fig. 4 are listed in Table I, along with the slope �. In Fig. 5
we show the temperature dependence of both R and � for
different densities. Lines have been drawn to indicate isoch-
ores and one isobar �p=0�. Note that when we talk of an
isobar here, we mean a set of NVT ensembles with V ,T
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chosen so that the thermal average of p takes on a given
value, rather than fixed-pressure ensembles. This figure
makes it clear that for fixed density, R increases as T in-
creases, while it also increases with density for fixed tem-
perature; the slope slowly decreases in these circumstances.
In fact, it eventually reaches 4, the value expected for a pure

r−12 interaction �e.g., at �=34.6 mol / l, T=1000 K, �=4.61,
see Ref. 10�. This is consistent with the idea that the repul-
sive part, characterized by an effective inverse power law,
dominates the fluctuations: Increasing either temperature or
density increases the frequency of short-distance encounters
while reducing the typical distances of such encounters. On
the other hand, along an isobar, these two effects work
against each other, since as T increases, the density de-
creases. The density effect “wins” in this case, which is
equivalent to a statement about the temperature and volume
derivative of R: Our simulations imply that

� �R

�T


p
= � �R

�T


V
+ � �R

�V


T
� �V

�T


p
� 0, �14�

which is equivalent to

FIG. 4. �Color online� Scatter plots of the configura-
tional parts of pressure and energy—virial vs potential
energy—for several state points of the SCLJ liquid
�NVT�. Each oval represents simulations at one particu-
lar temperature and density where each data point
marks instantaneous values of virial and potential en-
ergy. The dashed lines mark constant density paths with
the highest density to the upper left �densities: 39.8,
37.4, 36.0, 34.6, and 32.6 mol / l�. State points on the
dotted line have zero average pressure. The plot in-
cludes three crystallized samples �lower left corner�,
discussed at the end of Sec. III A and, in more detail, in
Paper II �reproduced from Ref. 10�.

TABLE I. Correlation coefficients R and effective slopes � for the SCLJ
system for the state points in Fig. 4. p is the thermally averaged pressure.
The last five states were chosen to approximately follow the isobar p=0.

� �mol/l� T �K� p �MPa� Phase R �

42.2 12 2.6 Glass 0.905 6.02
39.8 50 −55.5 Crystal 0.987 5.85
39.8 70 −0.5 Crystal 0.989 5.73
39.8 90 54.4 Crystal 0.990 5.66
39.8 110 206.2 Liquid 0.986 5.47
39.8 150 309.5 Liquid 0.988 5.34
37.4 60 −3.7 Liquid 0.965 6.08
37.4 100 102.2 Liquid 0.976 5.74
37.4 140 192.7 Liquid 0.981 5.55
37.4 160 234.3 Liquid 0.983 5.48
36.0 70 −0.7 Liquid 0.954 6.17
36.0 110 90.3 Liquid 0.969 5.82
36.0 150 169.5 Liquid 0.977 5.63
36.0 190 241.4 Liquid 0.981 5.49
36.0 210 275.2 Liquid 0.982 5.44
34.6 60 −42.5 Liquid 0.900 6.53
34.6 100 41.7 Liquid 0.953 6.08
34.6 140 114.5 Liquid 0.967 5.80
34.6 200 211.0 Liquid 0.977 5.57
32.6 70 −35.6 Liquid 0.825 6.66
32.6 90 −0.8 Liquid 0.905 6.42
32.6 110 31.8 Liquid 0.929 6.22
32.6 150 91.7 Liquid 0.954 5.95
32.6 210 172.7 Liquid 0.968 5.68

37.4 60 −3.7 Liquid 0.965 6.08
36.0 70 −0.7 Liquid 0.954 6.17
34.6 80 1.5 Liquid 0.939 6.27
32.6 90 00 Liquid 0.905 6.42
42.2 12 2.6 Glass 0.905 6.02

FIG. 5. �Color online� Upper plot, correlation coefficient R for the SCLJ
system as a function of temperature for several densities �NVT�. This figure
makes clear the different effects of density and temperature on R. Lower
plot, effective slope � as a function of T. Simulations at temperatures higher
than those shown here indicate that the slope slowly approaches the value 4
as T increases. This is to be expected because as collisions become harder,
involving shorter distances, the effective inverse power-law exponent ap-
proaches the 12 from the repulsive term of the Lennard-Jones potential.
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� �R

�T


V
� − � �R

�V


T
V�p = �� �R

��


T
�p, �15�

where �p���V /�T�p /V is the thermal expansivity at con-
stant pressure and � is the particle density. This can be recast
in terms of logarithmic derivatives �valid whenever
��R /���T0� as follows:

� �R

� ln�T�V

� �R

� ln���T

� T�p. �16�

Thus what we observe in the simulations, namely, that
the correlation becomes stronger as temperature is reduced at
fixed pressure, is a priori more to be expected when the
thermal expansivity is large �since then the right hand side of
Eq. �16� is large�. This has particular relevance in the context
of supercooled liquids, which we discuss in Paper II, because
these are usually studied by lowering temperature at fixed
pressure. On the other hand if the expansivity becomes
small, as for example, when a liquid passes through the glass
transition, inequality �16� is a priori less likely to be satis-
fied. We have, in fact, observed this in a simulation of OTP:
Upon cooling through the �computer� glass transition, the
correlation became weaker with further lowering of tempera-
ture at constant pressure.

Remarkably, the correlation persists when the system has
crystallized, as seen in the data for the highest density—the
occurrence of the first-order phase transition can be inferred
from the gap between the data for 90 and 110 K, but the data
fall on the same line above and below the transition. One
would not expect the dynamical fluctuations of a crystal,
which are usually assumed to be well described by a har-
monic approximation, to resemble those of the high-
temperature liquid. In fact, for a one-dimensional crystal of
particles interacting with a harmonic potential v�r�= 1

2k�r
−rm�2, it is easy to show �Paper II� that there is a negative
correlation with slope equal to −2 /3. To investigate whether
the harmonic approximation ever becomes relevant for the
correlations, we prepared a perfect fcc crystal of SCLJ par-
ticles at zero temperature and simulated it at increasing tem-
peratures, from 0.02 to 90 K in argon units, along a constant
density path. The results are shown in Fig. 6. Clearly the
correlation is maintained right down to zero temperature.
The harmonic approximation is therefore useless for dealing
with the pressure fluctuations even as T→0, because the
slope is far from −2 /3. The reason for this is that the domi-
nant contribution to the virial fluctuations comes from the
third-order term, as shown in Paper II.

B. A case with little correlation: The Dzugutov system

Before presenting data for all the systems studied, it is
useful to see what it means for the correlation not to hold. In
this subsection we consider the Dzugutov system,20 whose
potential contains a peak at the second-neighbor distance
�Fig. 7, see Appendix A for details� whose presence might be
expected to interfere with the effectiveness of an inverse
power-law description. In the next subsection we show how

in a specific model of water the lack of correlation can be
explicitly seen to be the result of competing interactions.
Figure 8 shows W ,U-plots for the Dzugutov system for two
nearby temperatures at the same density. The ovals are much
less elongated than was the case for SCLJ, indicating a sig-
nificantly weaker correlation—the correlation coefficients
here are 0.585 and 0.604, respectively. In Paper II it is shown
explicitly that the weak correlation is due to contributions
arising from the second peak. Note that the major axes of the
ovals are not aligned with the line joining the state points,
given by the mean values of W and U, here identifiable as the
intersection of the dashed and straight lines. On the other
hand, the lines of best fit from linear regression, indicated by
the dashed lines in each case, do coincide with the line con-
necting state points. This holds generally, a fact which fol-
lows from statistical mechanics �Appendix B�. The interest-
ing thing is rather that the major axes point in different
directions, whereas in the SCLJ case they are also aligned

FIG. 6. �Color online� Scatter plot of the W ,U-correlations for a perfect
face-centered-cubic �fcc� crystal of Lennard-Jones atoms at temperatures 1,
2, 3, 5, 10, 20, 30, 40, 50, 60, 70, and 80 K, as well as for defective crystals
�i.e., crystallized from the liquid� at temperatures 50, 70, and 90 K �NVT�.
The dashed line gives the best fit to the �barely visible� lowest-temperature
data �T=1 K�. The inset shows the temperature dependence of R at very low
temperatures. The crystalline case is examined in detail in Paper II, where
we find that R does not converge to unity at T=0, but rather to a value very
close to unity. All state points refer to the highest density of Fig. 4, 39.8
mol/l.

FIG. 7. �Color online� A plot of the Dzugutov pair potential, with the
Lennard-Jones potential �shifted by a constant� shown for comparison.
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with the state-point line. The linear-regression slope, being
equal to ��U�W� / ���U�2�, treats W and U in an asymmetric
manner by involving ���U�2�, but not ���W�2�. This is be-
cause a particular choice of independent and dependent vari-
ables is made. If instead we plotted U against W, we would
expect the slope to be simply the inverse of the slope in the
W ,U-plot, but, in fact, the new slope is ��U�W� / ���W�2�.
This equals the inverse of the original slope only in the case
of perfect correlation, where ��U�W�2= ���W�2����U�2�.
For our purposes a more symmetric estimate of the slope is
desired, one which agrees with the linear-regression slope in
the limit of perfect correlation. We use simply the ratio of
standard deviations 	���W�2� /	���U�2� �Eq. �7��. This
slope was used to plot the dashed line in Fig. 2�a� and the
full lines in Fig. 8, where it clearly represents the orientation
of the data better.28

C. When competition between van der Waals
and Coulomb interactions kills the correlation:
TIP5P water

As we shall see in the next section, the systems that
show little correlation include several, which involve both
van der Waals and hydrogen bonding, modeled by Lennard-
Joness and Coulomb interactions, respectively. As noted al-
ready, the latter, being a pure inverse power law �n=1�, by
itself exhibits perfect correlation with slope �=1 /3, while
the Lennard-Jones part has near perfect correlation. How-
ever, the significant difference in slopes means that no strong
correlation is seen for the full interaction. To check explicitly
that this is the reason the correlation is destroyed we have
calculated the correlation coefficients for the Lennard-Jones
and Coulomb parts separately in a model of water. Water is
chosen because the density of hydrogen bonds is quite high.
Simulations were done with the TIP5P model of water,27

which has the feature that the density maximum is reason-

ably well reproduced. This existence of the density maxi-
mum is, in fact, related to pressure and energy becoming
uncorrelated, as we shall see.

Figure 9 shows the correlation coefficients and slopes for
a range of temperatures; the correlation is almost nonexist-
ent, passing through zero around where the density attains its
maximum value. We have separately determined the correla-
tion coefficient of the Lennard-Jones part of the interaction;
it ranges from 0.9992 at −25 °C to 0.9977 at 75 °C, even
larger than we have seen in the SCLJ system. The reason for
this is that the �attractive� Coulomb interaction forces the
centers of the Lennard-Jones interaction closer together than
they would be otherwise; thus, the relevant fluctuations are
occurring higher up the repulsive part of the Lennard-Jones
pair potential. Correspondingly the slope from this interac-
tion ranges between 4.45 and 4.54, closer to the high-T, high
density limit of 4 than was the case for the SCLJ system.
This is confirmed by inspection of the oxygen-oxygen radial
distribution function in Ref. 27 where it can be seen that the
first peak lies entirely to the left of the vLJ=0 distance �
=0.312 nm. Finally note that the near coincidence between
the vanishing of the correlation coefficient and the density
maximum, which is close to the experimental value of 4 °C,
is not accidental: The correlation coefficient is proportional
to the configurational part of the thermal pressure coefficient
�V �Paper II�. The full �V vanishes exactly at the density
maximum �4 °C�, but the absence of the kinetic term means
that the correlation coefficient vanishes at a slightly higher
temperature ��12 °C�.

D. Results for all systems

In Fig. 10 we summarize the results for the various sys-
tems. Here we plot the numerator of Eq. �6� against the de-
nominator, including factors of 1 / �kBTV� in both cases to
make an intensive quantity with units of pressure. Since R
cannot be greater than unity, no points can appear above the
diagonal. Being exactly on the diagonal indicates perfect cor-
relation �R=1�, while being significantly below indicates
poor correlation. Different types of symbols indicate differ-

FIG. 8. �Color online� Scatter plot of W ,U-correlations for the Dzugutov
system at density 0.88 and temperatures 0.65 and 0.70 �NVE�. The dashed
lines indicate the best-fit line using linear regression. These are consistent
with the temperature dependence of the mean values of �W� and �U�, as they
should be �see Appendix B�, but they clearly do not represent the direction
of greatest variance. The full lines have slopes equal to the ratio of standard
deviations of the two quantities �Eq. �7��. The correlation coefficient is 0.585
and 0.604 for T=0.65 and T=0.70, respectively.

FIG. 9. Plot of R for TIP5P water in NVT simulations with densities chosen
to give an average pressure of 1 atm. Not only is the magnitude of R low
�less than 0.2� in the temperature range shown, but it changes sign around
the density maximum. The vertical arrow indicates the state point used for
Fig. 2�b�.
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ent systems, as well as different densities for the same sys-
tem, while symbols of the same type correspond to different
temperatures.

All of the simple liquids, SCLJ, KABLJ, EXP, DB, and
TOL, show strong correlations, while METH, SPC/E, and
TIP5P show little correlation. Values of R and � at selected
state points for all systems are listed in Table II. What deter-
mines the degree of correlation? The Dzugutov and TIP5P
cases have already been discussed. The poor correlation for
METH and SPC/E is �presumably� because these models,
like TIP5P, involve both Lennard-Jones and Coulomb inter-
actions. In systems with multiple Lennard-Jones species, but
without any Coulomb interaction, there is overall a strong
correlation because the slope is almost independent of the
parameters for a given kind of pair.

As the temperature is increased, the data for the most
poorly correlated systems, which are all hydrogen-bonding
organic molecules, slowly approach the perfect-correlation
line. This is consistent with the idea that this correlation is
observed when fluctuations of both W and U are dominated
by close encounters of pairs of neighboring atoms; at higher
temperature there are increasingly many such encounters,
which therefore come to increasingly dominate the fluctua-
tions. Also because the Lennard-Jones potential rises much
more steeply than the Coulomb potential, the latter becomes
less important as short distances dominate more. Although
not obvious in the plot, we find that increasing the density at
fixed temperature generally increases the degree of correla-
tion, as found in the SCLJ case; this is also consistent with
the increasing relevance of close encounters or collisions.

A system quite different from the others presented so far
is the binary square-well system, SQW, with a discontinuous
potential combining hard-core repulsion and a narrow attrac-
tive well �Fig. 11; see Appendix A for details�. Such a po-

TABLE II. Correlation coefficients and slopes at selected state points for all
investigated systems besides SCLJ. Argon units were used for DZ, EXP,
KABLJ, and SQW by choosing the length parameter �of the larger particle
when there were two types� to be 0.34 nm and the energy parameter to be
0.997 kJ /mol. The phase is indicated as liquid or glass. SQW data involve
time averaging over periods 3.0, 3.0, 8.0, and 9.0, respectively, for the four
listed state points. A minus sign has been included with the slope when R
�0; note that the � values only really make sense as slopes when �R� is
close to unity. The ensemble was NVT except for CU, DZ, MGCU, and
SQW, where it was NVE.

System � �mol/l� T �K� Phase R �

CU 125.8 1500 Liquid 0.907 4.55
CU 125.8 2340 Liquid 0.926 4.15
DB 11.0 130 Liquid 0.964 6.77
DB 9.7 300 Liquid 0.944 7.45
DZ 37.2 78 Liquid 0.585 3.61
EXP 30.7 96 Liquid 0.908 5.98
EXP 33.2 96 Liquid 0.949 5.56
KABLJ 50.7 30 Glass 0.858 6.93
KABLJ 50.7 70 Liquid 0.946 5.75
KABLJ 50.7 240 Liquid 0.995 5.10
METH 31.5 150 Liquid 0.318 22.53
METH 31.5 600 Liquid 0.541 6.88
METH 31.5 2000 Liquid 0.861 5.51
MGCU 85.0 640 Liquid 0.797 4.74
MGCU 75.6 465 Liquid 0.622 6.73
OTP 4.65 300 Liquid 0.913 8.33
OTP 4.08 500 Liquid 0.884 8.78
OTP 3.95 500 Liquid 0.910 7.70
SPC/E 50.0 200 Liquid 0.016 208.2
SPC/E 55.5 300 Liquid 0.065 48.6
SQW 60.8 48 Liquid −0.763 −50.28
SQW 60.8 79 Liquid −0.833 −49.11
SQW 60.8 120 Liquid −0.938 −52.02
SQW 59.3 120 Liquid −0.815 −30.07
TIP5P 55.92 273 Liquid −0.051 −2.47
TIP5P 55.94 285.5 Liquid 0.000 2.51
TOL 10.5 75 Glass 0.877 7.59
TOL 10.5 300 Liquid 0.961 8.27

FIG. 11. Illustration of the square-well potential, indicating the four micro-
scopic processes, which contribute to the virial.

FIG. 10. �Color online� W ,U-correlations for all simulated liquids;
��W�U� / �kBTV� plotted vs ����W�2����U�2��1/2 / �kBTV�. Both quantities
correspond to a pressure, which is given in units of GPa; for model systems
not specifically corresponding to real systems, such as SCLJ, KABLJ, and
SQW, argon units were used to set the energy and length scales. If the
correlation is perfect �R=1� the data fall on the diagonal marked by a dashed
line. For the TIP5P model of water only temperatures with R0 are in-
cluded; volumes were chosen to give a pressure close to zero.
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tential models attractive colloidal systems,12 one of whose
interesting features, predicted from simulations and theory, is
the existence of two different glass phases, termed the “re-
pulsive” and “attractive” glasses.29 The discontinuous poten-
tial not only makes the simulations substantially different
from a technical point of view, but there are also conceptual
differences—in particular, the instantaneous virial is a sum
of delta functions in time. The dynamical algorithm em-
ployed in the simulations is ED, where events involve a
change in the relative velocity of a pair of particles due to
hitting the hard-core inner wall of the potential or crossing
the potential step. The algorithm must detect the next event,
advance time by the appropriate amount, and adjust the ve-
locities of all particles appropriately. There are four kinds of
events �illustrated in Fig. 11�: �1� “collisions,” involving the
inner repulsive core; �2� “bounces,” involving bouncing off
the outer �attractive� wall of the potential; �3� “trapping,”
involving the separation going below the range of the outer
wall; and �4� “escapes,” involving the separation increasing
beyond the outer wall. To obtain meaningful values of the
virial a certain amount of time averaging must be done—we
can no longer consider truly instantaneous quantities. As
shown in Appendix C the time-averaged virial may be writ-
ten as the following sum over all events that take place in the
averaging interval tav:

W̄ =
1

3tav
�

events e

mr,ere · �ve. �17�

Here re and ve refer to the relative position and velocity for
the pair of particles participating in event e, while � indi-
cates the change taking place in that event. Positive contri-

butions to W̄ come from collisions; the three other event
types involve the outer wall, which, as is easy to see, always
gives a negative contribution. The default tav in the simula-
tion was 0.05. Strong correlations emerge only at longer av-
eraging times, however. An appropriate tav may be chosen by
considering the correlation functions �auto- and cross-� for
virial and potential energy, plotted in Fig. 12, where the “in-
stantaneous” values E�t� and W�t� correspond to averaging

over 0.05 time units. We choose tav��� /10, where �� is the
relaxation time determined from the cross-correlation func-
tion ��U�0��W�t��. Data for a few state points are shown in
Table II. Remarkably, this system, so different from the con-
tinuous potential systems, also exhibits strong
W ,U-correlations, with R=0.94 in the case T=1.0, �
=0.595 �something already hinted at in Fig. 12 in the fact
that the curves coincide�. There is a notable difference, how-
ever, compared to continuous systems: The correlation is
negative.

The reason for the negative correlation is that at high
density, most of the contributions to the virial are from col-
lisions: A particle will collide with neighbor 1, recoil, and
then collide with neighbor 2 before there is a chance to make
a bounce event involving neighbor 1. The number of colli-
sions that occur in a given time interval is proportional to the
number of bound pairs that is exactly anticorrelated with the
energy. The effective slope � has a large �negative� value of
order −50, which does not seem to depend strongly on tem-
perature. This example is interesting because it shows that
strong pressure-energy correlations can appear in a wider
range of systems that might first have been guessed. Note,
however, that the ordinary hard-sphere system cannot display
such correlations, since potential energy does not exist as a
dynamical variable in this system, i.e., it is identically zero.
The idea of correlations emerging when quantities are aver-
aged over a suitable time interval is one we shall meet again
in Paper II in the context of viscous liquids.

IV. SUMMARY

We have demonstrated a class of model liquids whose
equilibrium thermal fluctuations of virial and potential en-
ergy are strongly correlated. We have presented detailed in-
vestigations of the presence or absence of such correlations
in various liquids, with extra detail presented for the standard
SCLJ case. One notable aspect is how widespread these cor-
relations are, appearing not just in Lennard-Jones potentials
or in potentials that closely resemble the Lennard-Jones one,
but also in systems involving many-body potentials �CU and
MGCU� and discontinuous potentials �SQW�. We have seen
how the presence of different types of terms in the potential,
such as Lennard-Jones and Coulomb interactions, spoil the
correlations, even though each by itself would give rise to a
strongly correlating system. Most simulations were carried
out in the NVT ensemble; R is not ensemble independent, but
the R→1 limit is.

Several of the hydrocarbon liquids studied here were
simulated using simplified “united-atom” models where
groups such as methyl groups or even benzene rings were
represented by Lennard-Jones spheres. These could also be
studied using more realistic “all-atom” models, where every
atom �including hydrogen atoms� is included. It would be
worth investigating whether the strength of the correlations
is reduced by the associated Coulomb terms in such cases.

In Paper II we provide a detailed analysis for the SCLJ
case, including consideration of contributions beyond the ef-
fective inverse power-law approximation and the T→0 limit
of the crystal. There we also discuss some consequences,

FIG. 12. �Color online� Energy-energy, virial-virial, and energy-virial cor-
relation functions for SQW at packing fraction �=0.595 and temperature
T=1.0 �normalized to unity at t=0�. The cross correlation has been multi-
plied by −1. The arrow marks the time t=8, roughly 1 /10 of the relaxation
time �determined from the long-time part of the energy-virial cross-
correlation function�. This time was used for averaging.
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including a direct experimental verification of the correla-
tions for supercritical argon and consequences of strong
pressure-energy correlations in highly viscous liquids and
biomembranes.
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APPENDIX A: DETAILS OF INTERATOMIC
POTENTIALS

Here we give more detailed information about the inter-
atomic potentials used. These details have been published
elsewhere as indicated, except for the case of EXP and TOL.

CU: Pure liquid Cu simulated using the many-body po-
tential derived from EMT.17,18 This is similar to the embed-
ded atom method of Daw and Baskes,30 where the energy of
a given atom i, Ei, is some nonlinear function �the “embed-
ding function”� of the electron density due to the neighboring
atoms. In the EMT, it is given as the energy of an atom in an
equivalent reference system, the “effective medium,” plus a
correction term, Ei=EC,i�ni�+ 1

2 �� j�ivij�rij�−� j�i
ref vij�rij��.

Specifically, the reference system is chosen as a fcc crystal of
the given kind of atom, and “equivalent” means that the elec-
tron density is used to choose the lattice constant of the crys-
tal. The correction term is an ordinary pair potential involv-
ing a simple exponential, but notice that the corresponding
sum in the reference system is subtracted �guaranteeing that
the correct reference energy is given when the configuration
is in fact, the reference configuration�. The parameters were
E0=−3.510 eV, s0=1.413 Å, V0=2.476 eV, �2=3.122 Å−1,
�=5.178, �=3.602, and n0=0.0614 Å−3.

DB: Asymmetric dumbbell molecules,19 consisting of
two unlike Lennard-Jones spheres, labelled P and M, con-
nected by a rigid bond. The parameters were 
p

=5.726 kJ /mol, �p=0.4963 nm, mp=77.106 u, 
m

=0.66944 kJ /mol, �m=0.3910 nm, and mm=15.035 u; the
bond length was d=0.29 nm. Cross interactions, 
pm and
�pm, were set equal to the geometric and arithmetic means of
the p and m parameters, respectively �Lorentz–Berthelot
mixing rule31�.

DZ: A monatomic liquid introduced by Dzugutov as a
candidate for a monatomic glass-forming system.20 The po-
tential is a sum of two parts, v�r�=v1�r�+v2�r�, with v1�r�
=A�r−m−B�exp�c / �r−a�� for r�a and zero otherwise, and
v2�r�=B exp�d / �r−b�� for r�b, zero otherwise. The param-
eters are chosen to match the location and curvature of the
Lennard-Jones potential: m=16, A=5.82, c=1.1, a=1.87, B
=1.28, d=0.27, and b=1.94.

EXP: A system interacting with a pair potential
with exponential repulsion U�r�= �
 /8��6 exp�−14�r /�−1��
−14�� /r�6�. Note that the attractive term has the same form
as the Lennard-Jones potential.

KABLJ: The Kob–Andersen binary Lennard-Jones
liquid,21 a mixture of two kinds of particles A and B, with A
making 80% of the total number. The energy and length pa-

rameters are 
AA=1.0, 
BB=0.5, 
AB=1.5, �AA=1.0, �BB

=0.88, and �AB=0.8. The masses are both equal to unity. We
use the standard density �=1.2�AA

−3 .
METH: The GROMOS three-site model for methanol.32

The sites represent the methyl �M �CH3� group �m
=15.035 u�, the O atom �m=15.999 u�, and the O-bonded H
atom �m=1.008 u�. The charges for Coulomb interactions
are, respectively, 0.176e, −0.574e, and 0.398e. The M and O
groups additionally interact via Lennard-Jones forces, with
parameters 
MM =0.9444 kJ /mol, 
OO=0.8496 kJ /mol, 
MO

=0.9770 kJ /mol, �MM =0.3646 nm, �OO=0.2955 nm, and
�MO=0.3235 nm. Lennard-Jones interactions are smoothly
cutoff between 0.9 and 1.1 nm. The M –O and O–H dis-
tances are fixed at 0.136 and 0.1 nm, respectively, while the
M –O–H bond angle is fixed at 108.53°.

MGCU: A model of the metallic alloy Mg85Cu15, simu-
lated by EMT with parameters as in Ref. 23. In this potential
there are seven parameters for each element. However, some
of the Cu parameters were allowed to vary from their origi-
nal values in the process of optimizing the potential for
the Mg–Cu system. The parameters for Cu were
E0=−3.510 eV, s0=1.413 Å, V0=1.994 eV, �2=3.040 Å−1,
�=4.944, �=3.694, and n0=0.0637 Å−3, while those for Mg
were E0=−1.487 eV, s0=1.766 Å, V0=2.230 eV, �2

=2.541 Å−1, �=4.435, �=3.293, and n0=0.0355 Å−3. It
should be noted that there is an error in Ref. 23: The param-
eter s0 for Cu is given in units of bohr instead of Å.

OTP: The Lewis–Wahnström three-site model of OTP
�Ref. 24� consisting of three identical Lennard-Jones spheres
located at the apices A, B, and C of an isosceles triangle.
Sides AB and BC are 0.4830 nm long, while the ABC angle
is 75°. The Lennard-Jones interaction parameters are 

=4.989 kJ /mol and �=0.483 nm, while the mass of each
sphere, not specified in Ref. 24, was taken as one-third of the
mass of an OTP molecule, m=76.768 u.

SCLJ: The standard single-component Lennard-Jones
system with potential given by Eq. �11�.

SPC/E: The SPC/E model of water,25 in which each mol-
ecule consists of three rigidly bonded point masses, with an
OH distance of 0.1 nm and the HOH angle equal to the tet-
rahedral angle. Charges on O and each H are equal to
−0.8476e and +0.4238e, respectively. O atoms interact with
each other via a Lennard-Jones potential with 

=2.601 kJ /mol and �=0.3166 nm.

SQW: A binary model with a pair interaction consisting
of an infinitely hard core and an attractive square well:12,26

vij�r�=	, r��ij, vij�r�=−u0, �ij �r��ij�1+
�, vij�r�=0,
and r�ij�1+
�. The radius parameters are �AA=1.2, �BB

=1, and �AB=1.1, while 
=0.03 and u0=1. The composition
was equimolar, and the masses of both particles were equal
to unity.

TIP5P: In this water model27 there are five sites associ-
ated with a single water molecule. One for the O atom, one
for each H, and two to locate the centers of negative charge
corresponding to the electron lone pairs on the O. The OH
bond length and the HOH bond angle are fixed at the gas-
phase experimental values rOH=0.09572 nm and �HOH

=104.52°. The negative charge sites are located symmetri-
cally along the lone-pair directions at distance rOL
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=0.07 nm and with an intervening angle �LOL=109.47°. A
charge of +0.241e is located on each hydrogen site, while
charges of equal magnitude and opposite sign are placed on
the lone-pair sites. O atoms on different molecules interact
via the Lennard-Jones potential with �O=0.312 nm and 
O

=0.669 kJ /mol.
TOL: A seven site united-atom model of toluene, con-

sisting of six “ring” C atoms and a methyl group �H atoms
are not explicitly represented�. In order to handle the con-
straints more easily, only three mass points were used; one at
the ring C attached to the methyl group �m=40.065 u�, and
one at each of the two “meta” C atoms �m=26.038� �note
that with this mass distribution, the moment of inertia is not
reproduced correctly�. Parameters were derived from the in-
formation in Ref. 33: 
ring=0.4602 kJ /mol, 
methyl

=0.6694 kJ /mol, �ring=0.375 nm, and �methyl=0.391 nm.
The Lorentz–Berthelot rule was used for cross interactions.33

APPENDIX B: CONNECTING FLUCTUATIONS
TO THERMODYNAMIC DERIVATIVES

If A is a dynamical quantity that depends only on the
configurational degrees of freedom, then its average in the
canonical ensemble �NVT� is given by �where, for conve-
nience, we use a discrete-state notation, with Ai referring to
the value of A in the ith microstate, etc.�

�A� =
�iAi exp�− �Ui�
�i exp�− �Ui�

=
�iAi exp�− �Ui�

Q
, �B1�

where �=1 /kBT and Q is the configurational partition func-
tion. Then the inverse temperature derivative of �A� can be
written in terms of equilibrium fluctuations as follows:

� ��A�
��


V

= −
�iAi exp�− �Ui�Ui

Q

+
�iAi exp�− �Ui�� j exp�− �Uj�Uj

Q2 �B2�

=− ��AU� − �A��U�� �B3�

=− ��A�U� . �B4�

Now taking A=W and A=U successively we find that

� ��W�
�T


V
�� ��U�

�T


V
= � ��W�

��


V
�� ��U�

��


V

=
��W�U�
���U�2�

. �B5�

This last expression is precisely the formula for the slope
obtained by linear regression when plotting W against U.

Consider now volume derivatives. Because volume de-
pendence comes in through the microstate values, Ai and Ui,
and the volume derivatives of these are not necessarily re-

lated in a simple way, the corresponding expression is not as
simple: The derivative of �W� with respect to volume at fixed
temperature is given by

� ��W�
�V


T

=
�

�V
��p�V − NkBT�T �B6�

=�p� + V� ��p�
�V


T

= �p� − KT, �B7�

where KT is the isothermal bulk modulus. The derivative of
U can be obtained by writing pressure as the derivative of
Helmholtz free energy F �K is kinetic energy� as follows:

�p� = − � �F

�V


T
= − � ���U� + �K� − TS�

�V


T
�B8�

=− � ��U�
�V


T

+ T� �S

�V


T
. �B9�

Then using the thermodynamic identity ��S /�V�T

= ���p� /�T�V��V, we obtain the ratio of volume derivatives
of �W� and �U� as follows:

� ��W�
�V


T
�� ��U�

�V


T
= −

KT − �p�
T�V − �p�

, �B10�

which becomes −KT / �T�V� when the pressure is small com-
pared to the bulk modulus. As discussed in Paper II, �V can
be expressed in terms of ��U�W� again, but the fluctuation
expression for KT is more complicated. Thus we cannot sim-
ply identify the lines of constant T, varying V, on a �W�,
�U�-plot, as we could with lines of fixed V, varying T, by
examining the fluctuations at fixed V ,T.

APPENDIX C: VIRIAL FOR SQUARE-WELL SYSTEM

Here we derive the expression for the time-averaged
virial, Eq. �17�, as a convenience for the reader. The idea is
to replace the step u0 in the potential with a finite slope u0 /�
over a range �, and take the limit �→0. We start by replac-
ing a two-body interaction in three dimensions with the
equivalent one-dimensional, one-body problem using the ra-
dial separation r and the reduced mass mr. Let the potential
step be at r=rs and define x=r−rs �see Fig. 13�. We consider
an “escape event” over a positive step, so that an initial �rela-
tive� velocity v0 becomes a final velocity v1 and r goes from
a value less than r0 to a value greater than r0+�. The result-
ing formula also applies for the other kinds of events.

FIG. 13. Illustration of replacement of discontinuous step by a finite slope
for the square-well potential for the purpose of calculating the virial. The
limit �→0 is taken at the end.
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The contribution to the time integral of the virial from
this event is given by

� = 

0

t� �r0 + x�
3

Fdt = − 

0

t� �r0 + x�u0

3�
dt , �C1�

where F is the �constant� force in the region 0�x�� and t�

is the time taken for the “particle” �the radial separation� to
cross this region. The trajectory x�t� is given by the standard
formula for uniform acceleration

x�t� = v0t −
1

2

u0

�mr
t2, �C2�

which by setting x�t��=� gives the following expression for
t�:

t� = ��mrv0

u0
−	�mrv0

u0
2

−
2mr

u0
; �C3�

here we have taken the negative root, appropriate for a posi-
tive u0 �we want the smallest positive t��. Returning to �, it
can be split into two parts as follows:

� = − 

0

t� r0u0

3�
dt − 


0

t� x�t�u0

3�
dt . �C4�

Consider the second term: Using the expression for x�t�
from Eq. �C2�, we see that the result of the integral will
involve a term proportional to t�

2 and one proportional to t�
3.

Using Eq. �C3� to replace t���, and noting the � in the
denominator, the terms will have linear and quadratic depen-
dences on �, respectively. Thus they will vanish in the limit
�→0. On the other hand, the first term gives

� = −
r0u0

3�
t� = −

r0u0

3
�mrv0

u0
−	�mrv0

u0
2

−
2mr

u0


=
r0mr

3
�	v0

2 − 2u0/mr − v0� . �C5�

This expression can be simplified by writing it in terms
of the change of velocity �v�v1−v0. In the one-body prob-
lem conservation of momentum does not hold, and v1 is
given by energy conservation

1
2mrv0

2 = 1
2mrv1

2 + u0, �C6�

from which �v is obtained as

�v � v1 − v0 = 	v0
2 − 2u0/mr − v0; �C7�

thus, the expression for � becomes

� =
r0mr

3
�v =

mr

3
r · �v , �C8�

where in the last expression a switch to three-dimensional
notation was made, recognizing that for central potentials �v
will be parallel to the displacement vector between the two
particles. This expression, derived for escape events, must
also hold for capture events since these are time-reverses of
each other, and the virial is fundamentally a configurational
quantity, independent of dynamics �the above expression is
time-reversal invariant because the change in the radial com-

ponent of velocity is the same either way, since although the
“initial” and “final” velocities are swapped, they also have
opposite sign�. Bounce and collision events may be treated
by dividing the event into two parts at the turning point
�where the relative velocity is zero�, noting that each may be
treated exactly as above, then adding the results back to-
gether. If we now consider all events that take place during
an averaging time tav�, we get the time-averaged virial as

W̄ =
1

3tav
�

events e

mr,ere · �ve. �C9�
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