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Abstract
We first summarize the classical arguments that the vast majority of glass-forming liquids
require more than one ‘order’ parameter for their description. Critiques against this
conventional wisdom are then presented, and it is argued that the matter deserves to be
reconsidered in the light of recent experimental developments. Out of the eight basic
thermoviscoelastic frequency-dependent response functions, there are generally three
independent functions. For stochastic dynamics we show that there are only two independent
response functions; for this case it is shown how analytic continuation may be utilized to
express the third response functions in terms of two others. Operational criteria are presented
for the linear thermoviscoelasticity being described by a single ‘order’ parameter, in which case
there is just one independent thermoviscoelastic response function. It is shown that a
description with a single ‘order’ parameter applies to a good approximation whenever thermal
equilibrium fluctuations of fundamental variables like energy and pressure are strongly
correlated. Results from computer simulations showing that this is the case for a number of
simple glass-forming liquids, as well as a few exceptions, are briefly presented. Finally, we
briefly discuss a new conjecture according to which experiments at varying temperature and
pressure follow the density scaling expression for the relaxation time, τ = F(ρx/T ) (ρ and T
are density and temperature), if and only if the liquid is ‘strongly correlating’, i.e., to a good
approximation is described by a single ‘order’ parameter.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The question whether one ‘order’ parameter is sufficient for
describing glass structure attracted considerable interest among
glass scientists in the period 1950–1980. The question was
thoroughly discussed in particular in the 1970s [1–6] leading
to clarifications of a number of theoretical questions. Since
then, based on experimental evidence the consensus has been
that one ‘order’ parameter is rarely enough.

The term ‘order parameter’ was commonly used in
the glass community before the term in the 1960s became
commonly known in the physics community where it took on
a somewhat different meaning. In connection with critical
phenomena and the theory of second order phase transitions,
renormalization, etc, ‘order parameters’ reflect the relevant
Lie group symmetry and determine the relevant part of the

free energy within a Ginzburg–Landau expansion of the free
energy. In order not to confuse the issue it is probably a
good idea to change the wording, so below we refer to ‘order’
parameters or occasionally just parameters.

The present paper summarizes and extends recent works
making the case that the question of how many ‘order’
parameters are sufficient deserves to be reconsidered. In
section 2 we briefly summarize the classical viewpoint, in
section 3 critiques against it are presented, in section 4 the more
restricted well-defined case of linear thermoviscoelasticity
is presented, in section 5 thermoviscoelasticity in complete
generality is discussed, in section 6 we show that in
any stochastic description of the dynamics there are only
two independent response functions, section 7 treats the
single-parameter case where there is just one independent
thermoviscoelastic response function, in section 8 the
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new concept of a ‘dynamic’ Prigogine–Defay ratio, which
tests ‘one-parameter-ness’ by reference to single-frequency
thermoviscoelastic measurements, is presented. Section 9
presents a few computer simulations showing that several
systems indeed are well described by only a single parameter,
section 10 discusses a recent conjecture stating that the single-
parameter liquids are precisely those that obey density scaling
for the results of high-pressure experiments. Finally, section 11
gives a brief summary.

2. The conventional wisdom: one parameter is
seldom enough

The standard ‘order’ parameter theory of glass science was
developed by Davies and Jones in the 1950s [7, 8]. This theory
idealizes the glass transition and treats it as a genuine phase
transition. In the liquid the ‘order’ parameters are functions
of pressure and temperature, whereas they are frozen in the
glass phase. If �cp is the difference between liquid and glass
isobaric specific heat per unit volume at the glass transition
temperature Tg, �κT the liquid–glass difference of isothermal
compressibilities, and �αp the liquid–glass difference of
isobaric thermal expansion coefficients, the Prigogine–Defay
ratio � is defined [7–9] by

� = �cp�κT

Tg
(
�αp

)2
. (1)

Within the Davies–Jones framework one can prove [7, 8]
that � � 1, an inequality that has been confirmed in many
experiments on quite diverse glass-forming liquids [10–13].
If there is just a single ‘order’ parameter, one has � = 1.
Although there are glass-forming polymers where � = 1
within experimental uncertainty [14, 15], the vast majority, if
not all, glass-forming liquids have� > 1 (typically: 2 < � <

5) [2]. If simple first order dynamics are adopted, the case
of a single parameter implies an exponential decay towards
equilibrium after external disturbances [1–8]. This is rarely
observed, a fact that traditionally was seen as a confirmation
of the conventional wisdom that more than one parameter is
required.

A further classical argument for one parameter not being
enough is the well-known fact that glass properties are not
uniquely defined by, e.g., the density, as one would expect
if there is just one parameter [3, 11]. For instance, one can
prepare glasses with same index of refraction, but different
electrical conductivity. This point was beautifully illustrated
in Kovacs’ classical crossover experiments [11, 16].

In summary: the observed Prigogine–Defay ratios are
almost always significantly larger than unity, relaxations are
almost always non-exponential, and glass properties are not
just a function of density. This altogether makes a convincing
case for there generally being a need for more than one
parameter, a conclusion that also appears natural given the
complexities of glass-forming liquids and glass structure.
Based on this, with few exceptions (e.g., [17–20]), the matter
has not been actively discussed for long time.

3. Questioning the conventional wisdom

The first point to be noted is that the question of one or more
‘order’ parameters is not really well defined in the classical
approach, because the glass transition is not a phase transition.
The fact that the glass transition is a dynamic phenomenon—
a gradual falling out of equilibrium that inevitably takes
place whenever inherent relaxation times become longer than
experimental times—is well known and well understood. This
weakens the classical theory where one regards the glass
transition as a freezing-in process taking place at a particular
temperature [21].

A related conceptual problem is that the� of equation (1)
is not strictly well defined. The changes in specific heat,
etc, from liquid to glass are not well defined because of two
facts: (1) these changes are found by extrapolating the liquid
and glass properties, respectively, to the transition region.
The glass transition temperature, however, is not strictly well
defined because the glass transition is not a phase transition.
(2) The glass phase is not well defined—and it relaxes
continuously—in principle making any measured property in
the glass phase a function of time. Many researchers would
argue that, while this is correct in principle, these effects are
minor and not sufficiently important to reduce the observed
Prigogine–Defay ratios to unity. We take a more purist
viewpoint, however, and believe that concepts that are not well
defined should be avoided in a scientific description.

Recent experiments monitoring ageing of a glass at
temperatures around Tg indicate that in some cases the
deviations from equilibrium may be quantified in terms of
a single parameter. One example is a study where the
characteristics of the dielectric Johari–Goldstein beta loss
peak were used to monitor structural relaxations taking
place on the alpha timescale [22, 23]. To keep things
simple only beta loss-peak frequency and beta maximum loss
were monitored, thus providing two numbers that depend
on structure and temperature. For both sorbitol [22] and
tripropylene glycol [23] it was found that at any given
temperature these two numbers correlate linearly. Thus even
after a complex thermal history, when returning back to
some given temperature, beta loss-peak frequency and loss
maximum always lie on a line characterizing that temperature.
An example of this is provided in figure 1 showing loss-peak
frequency and maximum loss for the Johari–Goldstein beta
process of tripropylene glycol during a temperature cycling
around Tg. If the structure were characterized by more than
one order parameter, there is no reason why such a correlation
should hold. On the other hand, if structure is characterized by
a single parameter, at any given temperature the two quantities
must correlate, and for fairly small deviations from equilibrium
this correlation would appear approximately linear (in linear as
well as in log–log plots).

Other dielectric experiments also indicate that a single
structural parameter may be sufficient in some cases. Thus
studying the shape of the alpha loss peak as quantified by
the exponent of the best-fit stretched exponential function, it
has been shown for a number of liquids [24] that when both
temperature and pressure are varied, the shape depends only of
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Figure 1. Temperature-jump experiment for tripropylene glycol
monitored via the beta loss-peak frequency and loss-peak
maximum [23]. These two numbers depend on structure, and their
relaxation monitors structural relaxation (known to take place on the
alpha timescale). Starting at 185.0 K temperature was first lowered to
183.0 K and kept there for 84 h. Then temperature was changed to
181.0 K where it was kept for 140 h. Thereafter temperature was
changed back to 183.0 K and kept there for another 140 h. The fact
that the beta loss-peak frequency and loss maximum correlate at any
given temperature, also after jumping to 181.0 K and back go
183.0 K, indicates that the structure controlling the beta relaxation is
described by a single parameter.

the loss-peak frequency. A simple explanation of this would
be that there is just a single structural parameter, because if
that were the case, this parameter would determine both loss-
peak frequency and loss-peak shape and consequently these
two quantities would automatically correlate.

Richert and Weinstein from a study of the nonlinear
dielectric response on glycerol showed that, although the
dielectric and thermal relaxation times vary throughout the
liquid, they are locally closely correlated [25]. Again, if there
is just one parameter determining all properties, one would
expect that this parameter may fluctuate in space, but locally
determine both dielectric and thermal relaxation time.

More evidence comes from computer simulations. In a
model of ortho-terphenyl Mossa and Sciortino [26] studied
ageing for fairly small temperature steps that were, however,
large enough to be well outside the linear regime. The
simulations showed that in configuration space the location of
the ageing system can be traced back to equilibrium states. The
authors summarized their findings by stating that for nonlinear
relaxations close to equilibrium ‘a thermodynamic description
based on one additional parameter can be provided.’

There seems to be a general understanding in the glass
community that there is one ‘order’ parameter if and only if
the Prigogine–Defay ratio is unity, which happens if and only
if relaxations are simple exponentials. This is not correct,
however, and not what one finds from reading the classical
papers carefully. Goldstein in his 1964 review, for instance,
noted that in some situations with several parameters that

are mathematically constrained by several constraints, the
Prigogine–Defay ratio may be unity. In this situation ‘it is
really a matter of taste’ [27] whether one prefers to speak of
many (constrained) parameters or of a single generally non-
exponential ‘order’ parameter. Thus the observation of non-
exponential relaxations does not imply that there must be more
than one parameter.

In 2006 Schmelzer and Gutzow revisited the Prigogine–
Defay ratio and the question of the number of ‘order’
parameters [20]. Assuming just a single parameter the
dynamics of which follow the classical framework of the
thermodynamics of irreversible processes, they argued that
the standard Prigogine–Defay ratio (obtained by extrapolating
from glass and liquid to Tg) nevertheless is larger than unity.
This result seriously questions the prevailing understanding of
the glass community reviewed above, and it emphasizes the
need for further work.

The first one should do in reconsidering the ‘order’
parameter question is to make sure that the problem is well
defined. As mentioned, the standard Prigogine–Defay ratio �
of equation (1) is not well defined. As became clear in the
1970s [3, 4, 6], it is possible to define a version of� that is well
defined. This is done by referring exclusively to properties of
the equilibrium viscous liquid phase and its linear responses. In
this phase thermodynamic properties are generally frequency
dependent, and the high-frequency limits correspond to glassy
behaviour where structural relaxations do not take place. If
cp(ω) is the frequency-dependent isobaric specific heat per unit
volume [28], etc, this leads to the following rigorous definition
of the Prigogine–Defay ratio for the metastable equilibrium
viscous liquid at any temperature T :

� = {[cp(ω → 0)− cp(ω → ∞)]
× [κT (ω → 0)− κT (ω → ∞)]}
× {T [αp(ω → 0)− αp(ω → ∞)]2}−1. (2)

4. Linear thermoviscoelasticity

From now on we turn the focus exclusively to the metastable
liquid phase with no reference to the glass phase. This limits
the discussion compared to what is standard in glass science,
but has the advantage of making all concepts rigorously well
defined. Linear thermoviscoelasticity deals with the frequency
dependence of thermodynamic properties and their coupling to
frequency-dependent mechanical properties. It is understood
that, in principle, only infinitesimal perturbations are applied,
thus ensuring linearity. In the simplest (isotropic) theory
there are two fundamental ‘energy bonds,’ a thermal and a
mechanical. An energy bond has an ‘effort’ variable and a
‘displacement’ variable [29–31]. The thermal energy bond is
characterized by entropy S as the displacement variable and
temperature T as the effort, for the mechanical energy bond
the displacement variable is the volume V and the effort is
the negative pressure, −p. The product of the effort and the
differential displacement variable gives the energy transferred
into the system from its surroundings. Thus the two energy
bonds (figure 2) simply express the well-known fundamental
identity dE = T dS − p dV .
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Figure 2. The two fundamental energy bonds [31] for a system
described by standard thermodynamics. One energy bond is thermal;
here the ‘effort’ is temperature T and the displacement variable is the
entropy S; thus if Ṡ ≡ dS/dt is the entropy flux into the system, the
rate of energy transferred into the system is T Ṡ. The second energy
bond is mechanical; here the effort is negative pressure −p and the
displacement variable is the volume V ; if V̇ is the volume flux into
the system, the rate of energy transferred into the system is −pV̇ .

For infinitesimal perturbations around equilibrium with
angular frequency ω, if one imagines controlling the effort
variables and measuring displacement changes, and if the usual
complex notation is adopted where, e.g., T (t) = T0 + δT (t)
with δT (t) = Re[δT exp(iωt)], linearity is expressed in the
following relation where δs is entropy change per unit volume
and δv is relative volume change:

(
δs(ω)
δv(ω)

)
=

(
cp(ω)/T αp(ω)

αp(ω) κT (ω)

) (
δT (ω)
−δp(ω)

)
. (3)

The response matrix is sometimes termed the thermal
compliance matrix. Its symmetry expresses Onsager
reciprocity, reflecting the fundamental fact that there is time
reversibility on the microscopic level [32, 33].

5. The completely general case: three independent
thermoviscoelastic response functions

How many independent thermoviscoelastic response functions
exist? From the four variables, entropy, temperature, volume
and pressure, one may choose any two as ‘control’ variables.
Usually, one chooses one control variable from each energy
bond. There are thus four natural choices of control (‘input’)
variables, the two remaining are the measured (‘output’)
variables. For each choice there is one response matrix as in
equation (3) [34]. These four matrices are all symmetric by
Onsager reciprocity, leaving 12 frequency-dependent response
functions. These are not independent, however; if one matrix
is known, the three others are easily calculated from it by
isolating the output variables in question on the left-hand sides
of two equations. Thus there are only the three independent
response functions, for instance those of equation (3).

The above statement is true in complete generality. Papers
by Moynihan and others of the 1970s showed, however, that
in the ‘order’ parameter description there are really only two

independent response functions [1, 4, 35] (see also [36]). The
formula for calculating the third response function in terms of
the two others involves analytic continuation (next section).
The situation is analogous to that of the Kramers–Kronig
relation which allows one to calculate the imaginary part of a
response function in terms of its real part, but only if the latter
is known at all frequencies.

6. The general stochastic case: two independent
thermoviscoelastic response functions

In this section we summarize the master equation description
of viscous liquid dynamics [34, 37, 38] and show that it implies
that there are just two independent response functions. More
precisely, it is shown that knowledge of cp(ω) and αp(ω)

at all frequencies allows one to calculate κT (ω) except for
an overall additive constant giving the high-frequency limit.
This is equivalent to the above-mentioned result derived long
ago [1, 3, 36], but now in a setting that is explicitly consistent
with statistical mechanics.

In a master equation there are states and stochastic
transitions between the states. A complete description is
provided by the set of probabilities {Pn} that the system is in
state n. This is an ensemble description making it possible to
calculate all properties, including the entropy. Following [34]
we shall think of each state as an inherent state in the sense
of Stillinger and Weber [39] (i.e., a potential energy minimum
in configuration space), but other state interpretations are also
possible. Each state has the vibrational Gibbs free energy
Gn(T, p). The ensemble Gibbs free energy that includes the
probability dependence is given [34, 38] by

G(T, p, {Pn}) =
∑

n

Pn(Gn(T, p)+ kBT ln Pn). (4)

From this one finds the ensemble volume and entropy by
the usual thermodynamic relations V = ∂G/∂p and S =
−∂G/∂T .

The master equation dynamics are given by first order
equations in time that are mathematically similar to those of
the classical ‘order’ parameter description of glass science:

Ṗn =
∑

m

Wnm Pm . (5)

The main difference to the ‘order’ parameter description is the
constraint

∑
n Pn = 1 and that the present formalism ensures

consistency with statistical mechanics.
The rate matrix W depends on T and p and changes

slightly when these variables are perturbed by small time-
dependent variations. The same applies for the equilibrium
probabilities, Peq

n ∝ exp[−Gn(T, p)/kBT ]. According to the
principle of detailed balance, which ensures consistency with
statistical mechanics as well as time-reversal invariance, the
equilibrium probabilities [32, 33] obey

Wnm(T, p)Peq
m (T, p) = Wmn(T, p)Peq

n (T, p). (6)

Here temperature and pressure may be arbitrary functions
of time. For periodic infinitesimal perturbations from
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equilibrium the dynamics are perturbed via the transition
matrix’s dependence on pressure and temperature. The
equilibrium probabilities at p = p0 and T = T0 are denoted
by P0

n and the transition matrix at this state point is denoted by
W 0.

If Q1 is entropy and Q2 volume, solving the resulting
system of equations leads [34] to the following expression
for the compliance matrix of equation (3) (where ∂Qα

∂Pm
and

∂Qβ

∂Pm
are evaluated at (T0, p0), the matrix A(ω) is defined by

A(ω) ≡ (W 0 − iω)−1W 0 P0, α, β = 1, 2):

Jαβ(ω) = J ∞
αβ +

∑

m,n

∂Qα

∂Pn
Anm(ω)

∂Qβ

∂Pm
. (7)

Note that A(ω) → 0 for ω → ∞; thus Jαβ(ω) → J ∞
αβ for

ω → ∞. Introducing the matrix Ynm ≡ (P0
n )

− 1
2 W 0

nm(P
0
m)

1
2 ,

the detailed balance requirement equation (6) implies that Y is
symmetric. In terms of Y , the matrix A(ω) is given [34] by
A(ω) = RY (Y − iω)−1 R where Rnm = (P0

n )
1
2 δnm . Thus for

the relaxing part of the compliance matrix �J ≡ J − J ∞, if
∂Qα is the vector whose n th component is ∂Qα/∂Pn(T0, p0),
one has [34]

�Jαβ(ω) = 〈R∂Qα | Y

Y − iω
|R∂Qβ 〉. (8)

Adopting the standard ‘ergodicity’ assumption that all states
are connected by some path of intermediate states, the
matrix Y has a one-dimensional eigenspace corresponding
to the eigenvalue zero whereas all other eigenvalues are
negative [32, 33]. If the eigenvectors of Y corresponding
to all the negative eigenvalues are denoted by |ψ j 〉 with
corresponding eigenvalue −1/τ j , equation (8) implies

�Jαβ(ω) =
∑

j

〈R∂Qα |ψ j 〉〈ψ j |R∂Qβ〉 −1/τ j

−1/τ j − iω
. (9)

Since (−1/τ j)/(−1/τ j − iω) = 1/(1 + iωτ j ), changing to a
continuous notation equation (9) becomes

�Jαβ(ω) =
∫ ∞

0

gα(τ )gβ(τ )

1 + iωτ
dτ, (10)

where the functions gα(τ ) are real, but not necessarily positive.
By reference to the theory of analytic functions we show

below that not all three functions of the compliance matrix
are independent. This is intuitively obvious already from the
fact that the three compliance functions are determined by the
two functions g1(τ ) and g2(τ ). More precisely the argument
goes as follows. The three compliance functions �Jαβ(ω) are
analytic. Knowledge of such a function at all real, positive
frequencies by analytic continuation uniquely determines the
function in the complex plane. Equation (10) shows that there
is a branch cut along the positive imaginary frequency axis.
Given that�Jαβ(ω) → 0 for ω → ∞, the pole distribution on
the branch cut uniquely determines the compliance function.
More specifically, equation (10) implies that

�J22(ω) =
∫ ∞

0
lim

ω′→i/τ

{
(1 + iω′τ )

�J 2
12(ω

′)
�J11(ω′)

}

× 1

1 + iωτ
dτ. (11)

Thus knowledge of �cp(ω) and �αp(ω) at all real, positive
frequencies implies knowledge of �κT (ω). Similarly,
knowledge of �κT (ω) and �αp(ω) at all real, positive
frequencies implies knowledge of �cp(ω).

7. The single-parameter case: one independent
thermoviscoelastic response function

The compliance matrix Jαβ(ω) reflects both the relaxing
responses (completely characterized by �J (ω)) and the
instantaneous responses given by the high-frequency limits.
Switching to the time domain, if the relaxing responses of the
two energy bonds are always proportional, i.e., controlled by a
common variable δε(t), the entropy and volume responses per
unit volume are given by expressions of the form

δs(t) = γ1δε(t)+ J ∞
11 δT (t)− J ∞

12 δp(t)

δv(t) = γ2δε(t)+ J ∞
21 δT (t)− J ∞

22 δp(t).
(12)

We refer to this situation as that of a single ‘order’
parameter [34] and proceed to show following [34] that in this
case there is basically just one compliance function. Note that
no reference is made to the properties of the glassy state.

For periodically varying fields equation (12) implies

δs(ω) = γ1δε(ω)+ J ∞
11 δT (ω)− J ∞

12 δp(ω)

δv(ω) = γ2δε(ω)+ J ∞
21 δT (ω)− J ∞

22 δp(ω).
(13)

The ε-parameter may be expanded to first order as follows:

δε(ω) = �1(ω)δT (ω)−�2(ω)δp(ω). (14)

Substituting equation (14) into (13) and using the symmetry of
the compliance matrix leads to the identity γ1�2(ω) + J ∞

12 =
γ2�1(ω)+ J ∞

21 . For the imaginary parts this implies

�′′
1(ω)

γ1
= �′′

2(ω)

γ2
. (15)

When two analytical functions both with branch cuts on the
positive imaginary axis of the complex ω-plane have same
imaginary part, they are identical except for an overall additive
constant. The latter is zero, because the fact that the two
functions give the relaxing part of the responses implies that
they both go to zero for ω → ∞. Thus �1(ω) ∝ �2(ω).
By considering the constant pressure and constant temperature
cases it now follows easily from equations (13) and (14) that
�J11(ω) ∝ �J12(ω) ∝ �J22(ω), or:

�cp(ω) ∝ �αp(ω) ∝ �κT (ω). (16)

In conclusion, in the case of a single ‘order’ parameter
(equation (12)) there is basically just one independent
thermoviscoelastic response function, i.e., knowledge of one
of them implies knowledge of the two others except for the
overall additive constants giving their high-frequency limits.
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8. ‘Dynamic’ Prigogine–Defay ratio: a
single-parameter test

In principle, in order to test experimentally whether or
not a single ‘order’ parameter suffices, one measures the
three response functions of the compliance matrix to test
whether the relaxing parts are proportional (equation (16)).
This, however, requires wide-frequency measurements of
the thermoviscoelastic response functions, and there are yet
no measurements of all three thermoviscoelastic response
functions on a glass-forming liquid. (Even the isobaric
frequency-dependent specific heat cp(ω) has not yet been
measured reliably [28]. The problem is that, because frozen-in
stresses relax on the same timescale that the enthalpy relaxes,
establishing truly isobaric conditions is difficult and in most
experimental set-ups the stress tensor is not diagonal.)

Even when methods have been developed for measuring
the compliance matrix of equation (3), one may still expect
that initial measurements cover only a rather limited dynamic
range. This leads to the question: is it still possible to test
the single-parameter conjecture equation (12)? This question
was discussed in a recent publication [34] where it was shown
that, in fact, measurements at one single frequency are enough
to test the single-parameter conjecture. Of course, one can
never prove that a single-parameter description is correct in
an absolute sense—it is all a matter of investigating how
good such a description is. In the above-mentioned recent
paper [34] it was shown that a ‘dynamic’ Prigogine–Defay
ratio �T p(ω) � 1 exists with the property that, if this quantity
is unity at one frequency, it is unity at all frequencies—which
happens if and only if a single-parameter description applies.
The dynamic Prigogine–Defay ratio is given by the imaginary
parts of the three thermoviscoelastic response functions [34] as
follows:

�T p(ω) = c′′
p(ω)κ

′′
T (ω)

T0(α′′
p(ω))

2
. (17)

In order to minimize uncertainties measurements should
preferably be taken at a frequency around the alpha loss-
peak frequency, because only here the imaginary parts are
significantly different from zero. We expect that if �T p(ω) is
close to unity in the main relaxation region (e.g., below 1.1), a
single-parameter description applies to a good approximation.

9. Results from computer simulations

Recently thermal equilibrium fluctuations were studied in
computer simulations of various liquids [40, 41]. In many
cases it was found that in constant temperature and volume
simulations (the so-called NV T ensemble) pressure and
energy fluctuations correlate strongly. More accurately, this
applies for the configurational parts of pressure and energy, the
‘virial’ and the potential energy. (The kinetic parts of pressure
and energy—the ideal gas pressure at the given density and
temperature, and the kinetic energy—trivially correlate 100%,
but with a different proportionality constant.) As an example,
figure 3 shows the thermal fluctuations of virial and potential
energy for a standard Lennard-Jones liquid.
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Figure 3. Thermal equilibrium fluctuations of potential energy and
viral (the configurational part of pressure) for a standard
Lennard-Jones liquid [41]. The fact that these two quantities
correlate strongly shows that, as regards the configurational degrees
of freedom, a single-parameter description is quite good for the
thermoviscoelastic behaviour. For highly viscous liquids the
timescale separation between the slow configurational degrees of
freedom and the remaining implies that these correlations (that we
have also seen, e.g., in simulations of the highly viscous
Kob–Andersen binary Lennard-Jones mixture) implies that the three
thermoviscoelastic response functions are basically identical.

As shown in [34], liquids for which these quantities
correlate strongly in their fluctuations are well described by
a single order parameter. Intuitively this may be understood
by reference to equation (12) considered without perturbations
(δT (t) = δp(t) = 0) which, if assumed to describe also
the fluctuations, shows that entropy and volume fluctuations
are 100% correlated. Thus one expects that the dynamic
Prigogine–Defay ratio is close to unity for such ‘strongly
correlating liquids’. Figure 4 shows that strongly correlating
liquids include the Lennard-Jones liquid as well as a number
of other glass-forming liquids. Water and methanol are
interesting exceptions that do not show strong correlations
between virial and potential energy fluctuations (figure 5); thus
for these two hydrogen-bonding liquids a single-parameter
description does not apply.

10. A conjecture: strongly correlating liquids obey
density scaling and vice versa

The last five years large amounts of data on the behaviour
of glass-forming liquids under pressure have been published.
The motivation is that by not just varying temperature, but
pressure as well, much more information may be learned about
these systems. Generally, the liquid relaxation time τ , which
is basically the Maxwell relaxation time or the inverse alpha
loss-peak frequency, depends strongly on both temperature
and pressure, increasing with lowering temperature or raised
pressure. This is not surprising. A new and significant
finding [42–44], however, is that if ρ is the density, many
liquids obey ‘thermodynamic’ or ‘density’ scaling, i.e., the
function τ (T, p) may be written

τ = F

(
ρx

T

)
. (18)

Both the function F and the exponent x depend on the liquid
in question. This expression has mainly been tested on glass-
forming molecular liquids, the systems that are most easily
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Figure 4. Correlation coefficient between virial (volume times the
configurational part of the pressure) and potential energy thermal
equilibrium fluctuations for a number of liquids evaluated by
computer simulations [41]. The liquids represented are: LJ: standard
Lennard-Jones, exp: monatomic liquid with exponential repulsive
forces, dumb-bell: a molecule model of two atoms of unlike size,
BLJ: the Kob–Andersen binary Lennard-Jones liquid, methanol, and
SPC/ E water. The last two are hydrogen bonding and do not show
significant correlations; the other liquids do. It has been argued that
virial and potential energy give the slowly fluctuating parts of the
pressure and energy [41]; thus whenever the former quantities
correlate strongly, to a good approximation the liquid may be
regarded as described by a single parameter.

accessible. For hydrogen-bonding liquids like glycerol or
sorbitol the x’s initially reported were anomalously small [44],
but it now appears that the reason is that density scaling does
not work very well for hydrogen-bonding liquids [45].

Recently, Coslovich and Roland presented computer
simulations of binary Lennard-Jones type systems where the
exponent of the repulsive term of the potential varied, taking
the values 8, 12, 24, and 36 [46]. Such systems may be cooled
to low temperatures where the viscosity is very large, without
crystallizing. Their simulation results obey the density scaling
expression equation (18), which by itself is an interesting
finding. Even more interesting is the fact that the exponent
x appears to be one third of the effective exponent describing
the approximate power law of the potential. For the standard
binary Lennard-Jones case, for instance, this latter exponent is
not 12 as naively expected, but a number close to 18 depending
on the precise choice of fitting criteria [41].

In [41] some of the present authors previously found
that there are strong energy–pressure correlations whenever
the repulsive part of the interaction is well described by
an inverse power law. Since this seems also to be the
criterion for a liquid obeying density scaling (equation (18)),
an obvious conjecture is [41] that: A glass-forming liquid is
strongly correlating if and only if it obeys density scaling.
Two liquids that in computer simulations were not strongly
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Figure 5. Correlation coefficients for a number of glass-forming
liquids between virial and potential energy thermal equilibrium
fluctuations as function of temperature (in reduced units). The liquids
represented are: LJ: standard Lennard-Jones, exp: monatomic liquid
with exponential repulsive forces, dumb-bell: a molecule model of
two atoms of unlike size, BLJ: the Kob–Andersen binary
Lennard-Jones liquid, methanol, and SPC/ E water. The figure shows
the same systems as those of figure 4 studied by computer
simulations. The two hydrogen-bonding liquids, water and methanol,
show poor correlation, the remaining systems are all strongly
correlating. For the latter the correlation even increases as
temperature rises; this is because at high temperature the particles
approach each other more in collisions than at low temperatures and
the inverse power law description of the works better the closer the
particles are.

correlating are water and methanol [41], and we surmise
that hydrogen-bonding liquids generally are not strongly
correlating. The argument is that the existence of ‘competing
interactions’ (van der Waals forces as well as the directional
hydrogen bonds) destroy significant correlations, implying that
hydrogen-bonding liquids are not well described by a single
‘order’ parameter. This is consistent with the finding that
hydrogen-bonding liquids do not obey density scaling [45].

If this conjecture is correct, by virtue of their simplicity
the class of strongly correlating liquids provides an obvious
starting point for theories for viscous liquids and glass
formation. It would be obvious to further conjecture that
also covalently bonding liquids are not strongly correlating,
again due to the directional nature of the bonds. Many of
these systems have fairly low fragility. Low-fragility liquids
are traditionally thought to be simple (e.g., have to almost
exponential relaxations if the liquid is almost Arrhenius). We
here conjecture almost the opposite, namely that many high-
fragility liquids in a certain sense are simpler than many
low-fragility liquids. Note that this simplicity, however,
does not relate to the degree of non-exponentiality: both
strongly correlating and ‘complex’ liquids may have close
to exponential relaxations; there is no obvious correlation
between the degree of non-exponentiality and how strongly
correlating a liquid is.

11. Summary and final remarks

We have argued that the old discussion of one or more
‘order’ parameters deserves to be revitalized. There are
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indications that at least some glass formers may be well
described by a single order parameter as regards their linear
thermoviscoelasticity. It is important to emphasize that no
claim is made that the molecular structure is completely
characterized by a single number. We now have an
experimentally useful criterion for whether or not a single-
parameter description is accurate. Computer simulations
confirm that some model liquids are well described by a
single parameter; these liquids are referred to as ‘strongly
correlating’. Since hydrogen-bonding liquids do not show
these correlations, we expect that liquids with directional
bonding are not well described by a single parameter, whereas
van der Waals bonded liquids are. Thus it is conjectured
that for van der Waals liquids the relaxing parts of the three
thermoviscoelastic response functions of equation (3) are all
proportional, whereas for hydrogen-bonding liquids this is
conjectured not to be the case. This prediction can be
tested once methods have been developed to measure the full
thermoviscoelastic compliance matrix.
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ed S Flügge (Berlin: Springer) p 413

[37] Sciortino F 2005 J. Stat. Mech. P05015
[38] Palmer R G 1982 Adv. Phys. 31 669
[39] Stillinger F H and Weber T A 1983 Phys. Rev. A 28 2408
[40] Pedersen U R, Christensen T, Schrøder T B and Dyre J C 2008

Phys. Rev. E 77 011201
[41] Pedersen U R, Bailey N, Schrøder T B and Dyre J C 2008 Phys.

Rev. Lett. 100 015701
[42] Alba-Simionesco C, Cailliaux A, Alegria A and Tarjus G 2004

Europhys. Lett. 68 58
[43] Casalini R and Roland C M 2004 Phys. Rev. E 69 062501
[44] Roland C M, Hensel-Bielowka S, Paluch M and

Casalini R 2005 Rep. Prog. Phys. 68 1405
[45] Grzybowski A, Grzybowski K, Ziolo J and Paluch M 2006

Phys. Rev. E 74 041503
[46] Coslovich D and Roland C M 2008 J. Phys. Chem. B at press

8

http://dx.doi.org/10.1063/1.432870
http://dx.doi.org/10.1111/j.1749-6632.1976.tb39688.x
http://dx.doi.org/10.1063/1.323434
http://dx.doi.org/10.1016/0022-3093(78)90110-2
http://dx.doi.org/10.1063/1.439141
http://dx.doi.org/10.1080/00018735300101252
http://dx.doi.org/10.1021/ma60059a030
http://dx.doi.org/10.1002/pol.1982.180200811
http://dx.doi.org/10.1007/BFb0050366
http://dx.doi.org/10.1103/PhysRevLett.79.1317
http://dx.doi.org/10.1103/PhysRevLett.82.580
http://dx.doi.org/10.1063/1.2354471
http://dx.doi.org/10.1063/1.2374894
http://dx.doi.org/10.1002/zaac.19312030120
http://dx.doi.org/10.1016/S0022-3093(98)00599-7
http://dx.doi.org/10.1103/PhysRevLett.91.155703
http://dx.doi.org/10.1021/jp053439s
http://dx.doi.org/10.1103/PhysRevLett.97.095703
http://dx.doi.org/10.1103/PhysRevLett.92.045504
http://dx.doi.org/10.1140/epjb/e2002-00389-0
http://dx.doi.org/10.1103/PhysRevE.75.041502
http://dx.doi.org/10.1063/1.2434963
http://dx.doi.org/10.1063/1.435531
http://dx.doi.org/10.1080/00018738200101438
http://dx.doi.org/10.1103/PhysRevA.28.2408
http://dx.doi.org/10.1103/PhysRevE.77.011201
http://dx.doi.org/10.1103/PhysRevLett.100.015701
http://dx.doi.org/10.1209/epl/i2004-10214-6
http://dx.doi.org/10.1103/PhysRevE.69.062501
http://dx.doi.org/10.1088/0034-4885/68/6/R03
http://dx.doi.org/10.1103/PhysRevE.74.041503

	1. Introduction
	2. The conventional wisdom: one parameter is seldom enough
	3. Questioning the conventional wisdom
	4. Linear thermoviscoelasticity
	5. The completely general case: three independent thermoviscoelastic response functions
	6. The general stochastic case: two independent thermoviscoelastic response functions
	7. The single-parameter case: one independent thermoviscoelastic response function
	8. `Dynamic' Prigogine--Defay ratio: a single-parameter test
	9. Results from computer simulations
	10. A conjecture: strongly correlating liquids obey density scaling and vice versa
	11. Summary and final remarks
	Acknowledgment
	References

