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The laws expressing conservation of momentum and energy apply to any isolated
system, but these laws are violated for highly viscous liquids under laboratory
conditions because of the unavoidable interactions with the measuring equipment
over the long times needed to study the dynamics. Moreover, although particle
number conservation applies strictly for any liquid, the solidity of viscous liquids
implies that even this conservation law is apparently violated in coarse-grained
descriptions of density fluctuations.

1. Introduction

Glasses are made by cooling viscous liquids until they solidify [1–8]. Any liquid may
form a glass if it is cooled rapidly enough to avoid crystallization [9]. In order to
understand the properties of glasses one must understand the highly viscous liquid
phase preceding glass formation. Viscous liquids and the glass transition continue to
attract a great deal of interest because there is still no generally accepted description
of viscous liquid dynamics, i.e., their equilibrium fluctuations and corresponding
linear response properties. The question we address here is: on which principles
should a realistic description of viscous liquids be based? ‘Ordinary’ less viscous
liquids like ambient water are fairly well understood; they are described by equations
based on the fundamental laws expressing conservation of momentum, energy, and
particle number [10–12]. We argue below that viscous liquids are qualitatively dif-
ferent, and that the basic conservation laws cannot be used for arriving at a proper
description of viscous liquid dynamics.

As the glass transition is approached the liquid viscosity increases enormously.
Highly viscous liquids exhibit universal features as regards their physical properties.
Thus whether involving covalent, ionic, metallic, van der Waals, or hydrogen bonds,
virtually all viscous liquids share the three non’s:

(a) non-exponential time dependence of relaxations;
(b) non-Arrhenius temperature dependence of the viscosity with an activation

energy that increases as temperature decreases (this applies for the vast
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7 majority of viscous liquids – exceptions are, e.g., pure silica which is virtually

Arrhenius);
(c) nonlinearity of relaxations following even relatively small temperature jumps

(eg. 1%).

The last point is perhaps least puzzling given the fact that nonlinearity in most

models follows directly from the dramatic temperature dependence of the viscosity,

but the first two non’s are crucial characteristics of viscous liquids.
The most sophisticated and theoretically well-based theory for viscous liquid

dynamics is the mode-coupling theory [13, 14]. After a series of approximations

starting from Newton’s second law, mode-coupling theory ends up with a self-

consistent, nonlinear equation for the time dependence of the density autocorrelation

function. The strength of the theory is evidenced by the fact that it uniquely predicts

the dynamics from the static structure factor and a few other static equilibrium

averages. Comparisons to computer simulations and to experiments on moderately

viscous liquids generally favour mode-coupling theory. Nevertheless, it seems that

mode-coupling theory is unable to predict the properties of the highly viscous liquid

phase preceding conventional glass formation. As argued below, mode-coupling

theory’s starting point of the momentum, energy and particle conservation laws

does not apply for highly viscous liquids under realistic conditions. This may explain

why the theory apparently only works for the less-viscous phase.
A liquid is characterized by several diffusion constants. Of primary interest here

is the single-particle diffusion constant Ds, which determines the mean-square

displacement at long times via h�x2ðtÞi ¼ 2Dst, and the transverse momentum

diffusion constant: the kinematic viscosity � of the Navier–Stokes equation.

For ‘ordinary’ liquids like ambient water – with viscosity in the 10�3 Pa s range –

these diffusion constants typically have values within one or two orders of magnitude

of 10�7 m2 s�1. This is easily understood from elementary kinetic theory, according

to which the diffusion constant is of order the mean-free path squared divided by the

mean time between collisions of the diffusing entity. Rough estimates of these quan-

tities are 1 angstrom and 0.1 picosecond, respectively, resulting in the

value 10�7 m2s�1.
For liquids approaching the glass transition the diffusion constants decouple.

The single-particle diffusion constant decreases, whereas the kinematic diffusion

constant increases. Just above the glass transition the viscosity is typically of

order 1012 Pa s, which is a factor 1015 larger than for ‘ordinary’ liquids. Thus if the

single-particle diffusion constant is taken to be inversely proportional to the viscosity

as predicted by the Debye–Stokes–Einstein equation,y the ratio � ¼ Ds=� decreases

from roughly 1 to roughly 10�30 close to the glass transition. Such small dimension-

less numbers are highly unusual in condensed matter physics. The small magnitude

of � strongly suggests that there is a qualitative change of behaviour going from

‘ordinary’ to extremely viscous liquids.

yThe Debye–Stokes–Einstein relation does not always apply, but the occasional 1–3 order
of magnitude deviations do not affect the argument presented here. See, e.g. [15–18].
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7 The question is how this qualitative change manifests itself. The Navier–Stokes

equation most likely still applies for extremely viscous liquids, although this remains
to be proven experimentally. The extremely high viscosity, however, itself hints at
new and different physics of viscous liquids compared to ‘ordinary’ liquids: As an
example, if the viscosity is 1010 Pa s and the density is 103 kgm�3, the dynamic
viscosity is 107m2 s�1. Typical alpha relaxation times for this viscosity are of order
seconds, which is thus the relevant time-scale for studying viscous liquid dynamics.
In this case, transverse momentum diffuses more than one kilometre over the alpha
relaxation time, so for typical laboratory sample sizes momentum has ample time to
diffuse via the sample holder into and out of the liquid. This means that liquid
momentum cannot be regarded as conserved and that consequently, descriptions
based on momentum conservation are misleading [19–21].

To make these considerations more precise, note first that for any physical
quantity A with zero mean, if square brackets denote an equilibrium average,
at any given temperature we can define a characteristic time �A by

�A ¼
1

hA2i

Z 1

0

hAð0ÞAðtÞidt: ð1Þ

This definition applies, e.g., for the liquid’s total electrical dipole moment, its average
shear stress, its volume, etc., but it also applies for the liquid’s momentum and
energy (all quantities are understood to have been subtracted their mean value).
The momentum characteristic time, �mom, is sample-size dependent, of course,
varying as for any diffusion process with sample dimension L as / L2. For
an ‘ordinary’ liquid like ambient water, �mom is much larger than the dipole
characteristic time, which is in the picosecond range. Thus for calculating the
frequency-dependent dielectric constant via the Kubo formula involving the dipole
autocorrelation function, because it almost doesn’t change over the physically
relevant time, momentum may be regarded as constant and conserved. The situation
is the opposite for viscous liquids. Taking the above example of a liquid with
alpha relaxation time of one second, the momentum characteristic time is much
smaller here than the dipole characteristic time. Consequently, momentum may
not be regarded as conserved over the time span relevant for calculating the
frequency-dependent dielectric constant. In other words, just as there are adiabatic
and isothermal static linear responses, there are also two kinds of frequency-
dependent linear response functions: those that refer to a system with constant
momentum (‘adiabatic’ type linear response functions), and those that refer to a
system which continuously exchanges momentum with its surroundings. The latter
are relevant for viscous liquids, but few other places. It is possible that these two
response functions turn out to be identical in some cases, but it is not obvious that
this should be so, whereas it obviously is the case for less-viscous liquids.

The next variable to consider is energy. Heat conduction is notoriously slow and
the heat diffusion constant is almost independent of the viscosity. Nevertheless,
because a typical layer thickness in, e.g., dielectric relaxation measurements is
100 mm or smaller, when the alpha relaxation time becomes larger than one second,
heat exchange to and from the measuring cell becomes unavoidable. Thus eventually,
when the viscosity becomes sufficiently large, �en becomes smaller than the liquid’s
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7 alpha relaxation time, and the situation is analogous to that of above momentum

non-conservation: energy conservation is violated for viscous liquids under labora-

tory conditions, and descriptions based on energy conservation may lead to erro-

neous results.
We proceed to discuss density fluctuations. Molecules in an ‘ordinary’ liquid

basically move by a superposition of Brownian and vibrational motions. In contrast,

molecules in viscous liquids effectively move much more slowly because almost all

motion goes into vibrations. These vibrations take place around the ‘inherent states’

introduced by Stillinger and Weber defined as the potential energy minima and their

basins of attraction [22]. Only rarely does anything happen in the form of a so-called

flow event, a sudden rearrangement of molecules. Flow events are rare simply

because the energy barriers to be overcome are large compared to kBT. This picture

of viscous liquids goes back to Kauzmann, who in 1948 described flow events as

‘jumps of molecular units of flow between different positions of equilibrium in the

liquid’s quasicrystalline lattice’ [1]. Goldstein in 1969 first emphasized the impor-

tance of potential energy minima in configuration space and expressed the belief that

‘the existence of potential energy barriers large compared to thermal energy are

intrinsic to the occurrence of the glassy state, and dominate flow, at least at low

temperatures’ [23]. Since then, extensive computer simulations, have clearly con-

firmed this picture [24–27] (although it is still not possible to simulate the very

high viscosities reached when the calorimetric glass transition is approached).
In between flow events a viscous liquid is indistinguishable from an amorphous

solid; in fact any attempt to simulate a viscous liquid with viscosity close to the

laboratory glass transition on present-day computers would show nothing but

vibrating molecules. Based on this, it appears that a viscous liquid is more like a

solid than like ordinary less-viscous liquids – albeit a solid that flows:y

Viscous liquid ffi Solid that flows:

The ‘solidity’ of viscous liquids [28] has an important consequence for the description

of density fluctuations: The small molecular displacements in the surroundings of a

flow event may be estimated by reference to solid-state elasticity theory. To leading

order in r�1 the molecular displacement following a localized disturbance in an

elastic solid varies as r�2 where r in the present case is the distance to the flow

event [19, 29]. More precisely, if the flow event takes place at the orgin and the

displacement vector is u, the leading order term is u / r=r3. Like the Coulomb

electrical field uðrÞ has zero divergence, implying that to leading order there are no

long-ranged density changes induced by a flow event.

yPhenomenologically, one often defines a solid as a system which does not flow, implying that
a ‘solid’ that ‘flows’ is a contradiction in terms. Whether a system flows or not, however, is
a matter of time-scale; even a crystal flows at finite temperature. In a gravitational field,
for instance, a vertically flat crystalline sample has lower free energy than, e.g., a cubic-shaped
sample. Since any crystal in thermal equilibrium contains point defects, and since their move-
ments are impeded only by finite energy barriers, ‘flow’ from the cubic-shaped sample to the
flat is not only possible but bound to take place over sufficiently long time-scales.
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In highly viscous liquids flow events may be regarded as instantaneous on the
time-scale of the alpha relaxation process below the solidity length (introduced
in [28]). Numbering the flow events consecutively after the time they take place,
t�, if r� is the centre of the �’th flow event and b� measures its intensity, the
above considerations translate into the following expression for the time derivative
of the density �ðr, tÞ in a coarse-grained description:

_�ðr, tÞ ¼
X
�

b��ðr� r�Þ�ðt� t�Þ: ð2Þ

This equation does not constitute a dynamic theory, because it contains no
information about the correlations between different flow events. Nevertheless, it
serves to emphasize that density in viscous liquids has the appearance of a non-
conserved field variable: density can change at one point in space while not changing
at any other point; thus if the individual molecular motions are not traced but only
the coarse-grained density profile is monitored, it would appear that molecules have
been created or annihilated. Another way of seeing that equation (2) corresponds to
a non-conserved variable is that when it is transformed into k-space, this equation
corresponds to decay rates that are k-independent [19–21] whereas conserved
variables have decay rates proportional to k2.

In conclusion, viscous liquids are qualitatively different from the less-viscous
liquids studied in conventional liquid state theory (Table 1). A proper description
of viscous liquid dynamics should take into account the fact that the fundamental
conservation laws do not hold under laboratory conditions. Thus it appears that
Newton’s laws do not provide a useful starting point whereas, e.g., a stochastic
description is more appropriate. The obvious choice here are Langevin equations
for the relevant variables (density, dipole density, stress tensor, etc.) [21], or the
equivalent description of the probability functional in terms of the corresponding
Smoluchowski equations.
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Table 1. Basic conservation laws are violated in viscous liquids under realistic
laboratory conditions: both momentum and energy are unavoidably exchanged with
the measuring equipment over the relevant time-scale (the alpha relaxation time).

Particle number is strictly conserved, of course, but nevertheless the solidity of viscous
liquids implies that in a coarse-grained description density has the appearance of a non-

conserved field variable.

‘Ordinary’ liquids Viscous liquids

Relaxation time Picoseconds Seconds, years, . . .
Momentum conservation Crucially important Disobeyed
Energy conservation Crucially important Disobeyed
Particle number conservation Crucially important Apparently disobeyed
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