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Abstract 

A new method is presented for computer simulation of the macroscopic model for ac conduction, a model that 
considers Maxwell's equations for conduction in an inhomogeneous medium. The method iterates a small network. In 
this way, the overall admittance of the large RC-network, that one obtains by discretizing Maxwell's equations, is 
computed. Results are presented that confirm the universality prediction of the effective medium approximation in three 
dimensions. According to this prediction, all systems with a thermally activated local conductivity have the same 
frequency dependence of the conductivity, independent of the activation energy distribution. 

1. Introduction 

AC conduction in various types of disordered 
solids has been studied for many years. The studies 
in the 1950s were concerned with ionic conductive 
"classical" oxide glasses [1]. It was later found that 
the same ac features are seen in electronically con- 
ducting systems, such as amorphous semiconduc- 
tors [2,3], polymers [4], doped single crystals of 
silicon at helium temperatures [5], or metal-cluster 
compounds I-6]. The almost universally observed 
features of ac conduction in disordered solids are 
the following. At low frequencies the conductivity is 
constant. Around a characteristic frequency, in,,, 
the conductivity starts to increase, following an 
approximate power-law, ~ to s, where the exponent 
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s is between 0.7 and 1.0. This increase in conducti- 
vity continues up to phonon frequencies. A slight 
increase in s, if any, as the frequency increases is 
observed. As regards the temperature dependence 
of the conductivity, the dc conductivity is strongly 
temperature-dependent (usually thermally activ- 
ited) while the ac conductivity depends less on 
temperature. Finally, one always observes the 
Barton-Namikawa-Nakaj ima (BNN) relation [7]. 
This relation implies that the dc conductivity has 
the same temperature dependence as the character- 
istic frequency, ~Om, for onset of ac conduction. 

2. The macroscopic model for ac conduction 

The standard model for ac conduction in dis- 
ordered solids is the hopping model. This model 
considers a classical random walk of particles (elec- 
trons, polarons or ions) in a random environment. 
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The transition rates for jumps between two sites are 
usually assumed to be thermally activated. In the 
case of hopping electrons there is in most cases an 
extra exponential tunneling factor, The hopping 
model assumes, in its simplest form, non-interacting 
particles. This assumption means that 'self-exclu- 
sion' is not taken into account (that there is only 
room for one particle at each site) nor is Coulomb 
repulsion between the charge carriers. These sim- 
plifications raise the question whether it is possible 
to have a more realistic model, while still retaining 
the simplicity of the non-interacting hopping 
model. 

In recent work by one of us [8,9] a macroscopic 
approach to ac conduction in disordered solids was 
advocated. The model considered, below referred 
to as the macroscopic model, is not new, but in the 
past it has been studied mainly in regard to dc 
conduction and percolation. The macroscopic 
model assumes a spatially varying [frequency inde- 
pendent] conductivity, g(r). The overall macro- 
scopic conductivity becomes frequency-dependent, 
because charges gradually accumulate at the 
boundaries between conducting and less conduct- 
ing regions, creating a time-dependent polarization. 
To calculate the frequency-dependence one refers 
directly to Maxwell's equations. This is how 
Coulomb interactions are taken into account in the 
macroscopic model (remember that Coulomb's law 
is contained in Gauss's law). When Maxwell's equa- 
tions are discretized, one arrives at the electrical 
equivalent circuit shown in Fig. 1 [9]. The resistors 
have values that are given by the local resistivities, 
1/9(0, while all capacitors are equal, having a value 
given by the [infinite-frequency] dielectric con- 
stant. The currents through the capacitors are the 
well-known displacement currents, while the resis- 
tor currents are the sought for free charge currents. 

It is possible in this model to solve the relevant 
equations in the effective medium approximation 
(EMA). If one considers an admittance network in 
D dimensions with randomly distributed admittan- 
ces, Y, the EMA predicts an effective average ad- 
mittance, Ym, given by [10] 

.y Y - Y m  
+ 5:zg r.) =° (1) 

In Ref. [9] a detailed comparison was made be- 
tween the EMA predictions for the network in 
Fig. 1 and computer simulations in 2 dimensions. It 
was assumed that the local conductivities are given 
by an activation energy randomly chosen accord- 
ing to some probability distribution. The overall 
admittance was then calculated by means of the 
Frank-Lobb algorithm [11]. There was an excel- 
lent agreement between the simulations and the 
EMA predictions. This agreement was observed 
even at low temperatures where the admittance 
distribution covers ~ 100 decades. Here, the EMA 
in the prevailing general opinion was not expected 
to do very well (because the EMA usually is derived 
from a weak disorder perturbation expansion). As 
the temperature goes to zero, the EMA predicts 
a frequency dependence of the conductivity that is 
independent of the activation energy probability 
distribution. In this limit one finds that, if 
6 = a/tr(O) and g = i03 with 03 being a suitably 
scaled frequency, 6 is given as the solution [9] of 

ff In(e) = g. (2) 

Fig. 1. Electrical equivalent circuit of Maxwell's equations for 
an inhomogeneous conductor, discretized in two dimensions. All 
capacitors are equal while the resistors vary, reflecting the spa- 
tially varying conductivity of the solid. The resistor currents are 
the free charge currents of interest here; the capacitor currents 
are the displacement currents 19]. Because of the Max- 
well-Wagner effect (giving rise to a time-dependent polarization 
due to charge accumulation) the conductivity becomes fre- 
quency dependent. 
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As an illustration of this 'universality', Fig. 2 shows 
the results of computer simulations in two 
dimensions of several activation energy distribu- 
tions at/3 = 160, where fl is the inverse tempera- 
ture in dimensionless units. 

The universality qualitatively corresponds quite 
well to the conductivity observed in disordered 
solids. Thus, when Eq. (2) is converted into real 
frequencies it predicts an approximate power-law 
frequency dependence of the conductivity with an 
exponent given by s = 1 - 2/ln (~or) where ~ is the 
characteristic time giving the onset of ac behaviour. 
A few decades above ( . 0  m = 1/z this gives s~0.8.  As 
the temperature is decreased, the universal con- 
ductivity curve is displaced towards lower frequen- 
cies in the log-log plot. If  one measures in a fixed 
frequency range, in effect one measures further 
and further out on the universal curve as the tem- 
perature is decreased. Therefore, the theory 
predicts that the exponent goes to one as the tem- 
perature goes to zero. This effect is observed in 
experiment. 
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Fig. 2. Test in two dimensions of the EMA prediction (Eq. (2)) 
for the low temperature universal conductivity (full curve) in 
a log-log plot (base 10) at/3 = 160 (reproduced from Ref. [9] ). 
The x-axis denotes the real dimensionless 'Laplace' frequency 
g = io3, corresponding to an imaginary frequency, while the 
y-axis is the normalized conductivity # = trig(O). The symbols 
refer to various activation energy distributions. This figure was 
obtained by averaging 10 simulations of 200 x 200 lattices solved 
by using the Frank-Lobb algorithm. 

3. A new recursive 'renormalization' method 
for simulations 

Computer simulations of the model in three di- 
mensions are difficult. In three dimensions there is 
no algorithm which is as efficient as the 
F rank-Lobb  algorithm in 2-D. Furthermore, at low 
temperatures corresponding to/3's of order 100 or 
more, large lattices are needed to average out the 
large conductance fluctuations of the model. There- 
fore the problem becomes extremely complicated; if 
for instance one wants to solve KirchholTs equations 
this corresponds to solving 10 6 o r  more sparse linear 
equations. Today an efficient algorithm is available 
for doing this, the algebraic multigrid algorithm 
(AMG) [9], but even with this algorithm it was 
difficult to obtain reliable answers in a reasonable 
computer time. This failure is because it is not only 
neccesary to solve a huge number of equations, but it 
is also neccesary to obtain the solution with an 
accuracy of very many digits. Some 3-D AMG simu- 
lations were presented in Ref. [9], but results were 
inconclusive. We have therefore developed an alter- 
native method for dealing with the problem. 

The method, which will be described in detail 
elsewhere [12], consists in recursively iterating 
a small network. The idea is inspired by earlier work 
by Stinchcombe and Sahimi and coworkers on 
real-space renormalization of random resistor 
networks [13,14]. Here, however, we adopt a phe- 
nomenological approach and do not refer to the 
renormalization group. Suppose one has a small 
RC-network; we used a 4 x 4 × 4 network, with 
short-circuited end-faces. A phenomenological con- 
stant is multiplied to the calculated overall admit- 
tance so that equal admittances between all nodes 
produces the same overall 4 x 4 x 4-network admit- 
tance. This trick makes it possible to avoid the total 
admittance running away upon iterating and there- 
by it becomes easier to identify the interesting fre- 
quency range [12]. But the trick means that one 
probably does not get a numerically accurate esti- 
mate of the conductivity. However, plots as Fig. 2 
of the relative conductivity are still possible - and 
this is the focus of the present work. The network is 
iterated by replacing each admittance by the total 
admittance of a similar 4 × 4 x 4 network, etc, to 
some depth - in the present case depth 4. At the 
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"lowest" level the network admittances are each 
a capacitor in parallel with a resistor determined by 
a randomly chosen activation energy. Finally, when 
the entire iterative calculation is finished, we sub- 
tract s, the capacitor contribution to the overall 
admittance. Thus, one is left with the free charge 
conductivity. In this way one 'simulates' a very 
large 3-dimensional lattice; the present case corres- 
ponding to a side length of almost 300. 

In our simulations we found that it was necce- 
sary to go to some depth (here 4) to obtain 'self- 
averaging'. This means that many calculations are 
necessary. The calculation of the admittance of 
each single 4 x 4 x 4 network is a non-trivial prob- 
lem that must be solved in a short time and with 
great accuracy. One can always find the overall 
admittance of a network by removing nodes one by 
one; whenever a node is removed a number of new 
admittances are introduced. This process is some- 
times referred to as the Fogelholm algorithm [15]; 
it utilizes the general star-mesh transformation 
well-known from electrical engineering [16]. To 
speed up the calculation of the 4 x 4 x 4-network 
admittance we wrote a program that generates 
Turbo Pascal code for doing this calculation, 

a code which uses only simple array operations. In 
this way we eleminated the linked lists of neighbour 
points connected to a given admittance, that are 
present in the original Fogelholm algorithm. The 
generated Turbo Pascal code was then compiled 
and the compiled code is called by another program. 
The details of the method will be given elsewhere 
[12], but we note here that this way of solving the 
iteration speeds up the calculation by a factor of 
about one hundred compared to our first program 
that directly used the Fogelholm algorithm. 

Typical results of the calculations are given in 
Fig. 3. This figure shows results for fl = 120. The 
full curve is the prediction of Eq. (2). On the basis of 
Fig. 3 and other similar figures it is now possible to 
conclude that even in three dimensions the pre- 
dicted universality is valid and well fitted by the 
EMA prediction. 

4. Discussion 

Does the universal EMA function fit experiment 
accurately? Certainly, experiments do not point to 
an exact universality at finite temperatures, but 
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Fig. 3. Test in three dimensions of the EMA prediction (Eq. (2)) for the low temperature universal conductivity (full curve) at 
fl = 120. The results were obtained by the new method presented here that iterates a 4 x 4 x 4 lattice to depth 4. At this level the system 
becomes self-averaging so it is not neccesary to average over several simulations. [] denotes results for the box distribution of energy 
barriers; /x denotes results for the triangle distribution (for details of the generation of these distributions, see Ref. 19]). 
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a comparison to a number of experiments [17] has 
shown that this function does capture all qualitative 
features and sometimes provides a quantitatively 
accurate fit. Below the loss peak, however, the uni- 
versal EMA function becomes Debye-like (using now 
the dielectric language), which does not correspond 
well to experiment. In this region, which deserves 
further experimental investigations, the well-known 
'long time tails' inherent in any random walk become 
important. This phenomenon goes beyond the EMA. 

5. Conclusion 

This paper has shown how to study the macro- 
scopic model numerically by a new iterative 
method. The results give new and convincing evid- 
ence that the EMA universality is also valid in three 
dimensions. 

This work was supported by the Danish Natural 
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