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In this paper a conceptual link between the tracer correlation factor and the physical or conductivity correlation factor 
is explored in detail. As an aid to the discussion Monte Carlo simulation is used to calculate diagonal and cross phenomenol- 
ogieal transport coefficients. It is shown that the tracer correlation factor can be regarded as a conductivity correlation 
factor and that the question of the formal correlation factor status of the conductivity correlation factor is meaningless. 

1. Introduction 

Correlation effects in the solid state diffusion pro- 
cess have attracted considerable attention ever since 
the discovery of the existence of such effects in tracer 
motion by Bardeen and Herring [1]. Much of the 
work up to 1970 was concerned with the calculation 
of the tracer correlation factor,/ ,  for different mecha- 
nisms and models; this work has been reviewed in the 
excellent treatise by Le Claire [2]. Starting with the 
classic papers of Sate and Kikuchi [3,4], there has 
since been a greater concern with other types of  cor- 
relation, particularly in the ionic conduction process. 
Sate and Kikuchi discovered that in some cases of  
ionic diffusion by the vacancy mechanism, when the 
vacancy concentration is not small, one is required to 
introduce a correlation factor into the expression for 
the dc ionic conductivity. This extra factor is called 
the physical or conductivity correlation factor and is 
symbolized b y / l  (sometimes/c). For such cases it 
turns out that the Haven ratio, HR, is now given by 
(assuming the vacancy mechanism)f//I rather than f 
alone ) .  

The importance of conductivity correlation cannot 

* The subject of the Haven ratio has been reviewed in detail 
by Murch [6]. 

be overstated. Recent calculations for Y203 doped 
CeO 2 by Murray et al. [5] using a hybrid lattice relax- 
ation/Monte Carlo simulation scheme showed that the 
conductivity correlation factor can reduce the ionic 
conductivity by more than 1.5 orders of  magnitude. 

The formal correlation factor status o f / I  has been 
a matter of  difficulty. Sate and Kikuchi [3,4] origin- 
ally argued that / I  is a correlation factor in the ionic 
conductivity in much the same way as / i s  a correla- 
tion factor in the tracer diffusivity. More recently, 
Sate and Kikuchi [8] have referred to it as a correla- 
tion factor or efficiency of motion of the assembly of 
atoms relative to a random walk. One implication of 
this could seem to be that/1 represents the correlation 
factor of  charged atoms in an ionic conductor or, more 
generally, unmarked atoms. This latter interpretation 
was used in much of the early Monte Carlo work of 
Murch and Thorn [9,10]. Later Murch [6] argued 
against this formal description since it was based on 
an out-of-context use of  the Nernst-Einstein equa- 
tion. Nonetheless, one has an intuitive feel t h a t / a n d  
/ I  are related and have similar interpretations. It is 
this point which will be explored in the present paper. 

In a recent review Sate [ 11 ] discussed briefly what 
amounts to a formal connection be tween /and / I .  He 
focused on the dependence of  the correlation factor 
on tracer concentration for various boundary condi- 
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tions. That review was written from the perspective 
of, and in the language of, the Path Probability Meth- 
od. His approach is to reduce the conductivity correla- 
tion factor to a geometrical correlation factor. In the 
present paper, our approach is the converse. Here we 
explore the link between fl and fI by means of some 
elementary irreversible thermodynamics and the 
Monte Carlo method. While the question of the cor- 
relation factor status o f f  I is not answered, we will 
show that f i t se l f  can be regarded as a conductivity 
correlation factor and, by doing so, show that any 
argument over the formal correlation factor status of 
fl  is in fact meaningless. 

2. Correlation effects in tracer diffusion and ionic 
conductivity 

Ionic diffusion in solids is normally described 
within the framework of irreversible thermodynamics 
[ 1,6,12,13]. Consider a system containing host ions 
A, tracer ions A* and vacancies V. The fluxes of these 
components are given by [6] 

JA = LAAXA + LAA*XA* ' ( la) 

JA* = L A*AXA + LA*A*XA* (lb) 

and 

JV = --(JA +JA*) ' ( lc) 

where the Lq are the phenomenological coefficients 
and X i = -grad/~/where V/is the chemical potential 
of species i. 

From these equations one can easily derive explicit 
expressions for such quantities as the tracer diffusion 
coefficient DA,,  the dc ionic conductivity and the 
chemical diffusion coefficients [6,14,15] as well as re- 
lations among these quantities such as the Haven Ratio 
and the exact Nernst-Einstein equation [ 16]. 

Of interest to us in the present context is the tracer 
diffusion coefficient 

= kT(/-'A*A * LA*A '~ (2) 
DA* N ~ CA* C a 1 '  

where c i is the mole fraction of species i and N is the 
total number of entities of all species per unit volume. 
Eq. (2) is valid for any value of CA, except, of course, 
CA, = 0 and CA, = 1 -- c v (i.e., c A = 0). Since in an 

actual tracer diffusion experiment the tracer concen- 
tration is very low, it is usual to let CA, -* 0 in eq. (2) 
with the result that 

kT~LA*A* ~ 
DA* = "N ~ c--b"~ ] '  cA* "* 0 .  (3) 

Also of interest to us is the expression for the dc 
ionic mobility 

~*(LA*A*+LA*A t 
UA* . . . . .  (4) CA * ] '  qA qA* " 

Eq. (4) was derived with the condition that both A 
and A* carry the same charge, i.e., qA = qA*" Because 
of this condition UA. cannot depend on CA.. In pas- 
sing we note that we can, of course, let CA. = 1 -- c V, 
i.e., c A = 0. Then LA. A = 0 and we simply have that 

UA.-qA*LA*A* , c A = 0 .  (5) 
NCA* 

Now let us consider a "thought experiment" in 
which one measures the dc ionic mobility of A* with 
the condition that only the tracer ions carry a charge, 
i.e., qA = 0. Following the same procedure as de- 
scribed in ̂ [14] we find that this mobility, which we 
will call UA.,O is given by 

uO. = qA*LA*A * 
NCA, ' qA = 0 .  (6) 

Comparing eq. (6) with eq. (3) and eliminating LA.A, 
which is, of  course, independent of force, we find that 

uO* qA* 
D A * - k T  ' CA* ~ 0 ' q A  = 0 "  (7) 

Eq. (7) is seen to be a version of the Nemst-Einstein 
equation, see ref. [16]. It is not new, however, since 
it can be easily found, with the appropriate substitu- 
tions, from eq. 4.73 in ref. [7] which relates the im- 
purity ionic mobility to the impurity diffusion coef- 
ficient, with the impurity representing the tracer. 

The existence of eq. (7) implies a rather interesting 
result. Since DA. always has the form 

OA* = rX2/' /2,  (8) 

where I' is the tracer jump frequency, ~. is the average 
component of the jump distance in the diffusion direc- 
tion andf i s  the tracer correlation factor, then, accord- 
ing to eq. (7), u°* must have the following form in the 
limit CA. ~ 0 
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uOA • =qA, Fk2 f ° /2kT ,  CA, ~ 0 , q A  = 0 .  (9) 

In eq. (9) we have introduced f0  = limcA.~0 f for 
reasons which will become apparent later. The for- 
mal appearance of f i n  an expression for an ionic mo- 
bility is unusual and implies that f can be considered 
a conductivity correlation factor in the same sense 
t h a t f  I is in the following accepted expression for 

UA, [6] 

UA* = qA* Fk2fI /2kT,  qA =qA* • (10) 

The formal similarity between these expressions now 
suggests a useful conceptual link between f and f l .  
Thus f represents the correlation in the tracer ionic 
mobility uO, when CA, ~ 0 and qk = 0, while f I rep- 
resents the correlation in the tracer ionic mobility 
UA, when qA = qA*" Now, since UA, is in fact inde- 
Pendent of  CA,, for def'miteness let us consider UA, 
when there is no A present, i.e.,c A = 0 and CA, = 
1 -- c v.  Starting with such a lattice and progressively 
replacing A* atoms with A atoms (with however the 
restriction qA = 0) one can traverse the concentration 
range of CA, and reach the domain where CA, --, 0 
and uO, is relevant. Since all that is changing in this 
"thought experiment" is the concentration of 
charged A* ions, it is natural to ask two questions. 
What is the behavior of the usual tracer correlation 
factor f(cA, ) in this range 0 < CA* ~< 1 -- CV? What 
is the behavior of the conductivity correlation factor 
of the A* ions in the same range? 

These questions can be answered by resorting to 
a particular model and using Monte Carlo simulation. 
But first a few general comments are in order. Com- 
paring eqs. (2) and (6) and noting that F and k can- 
not depend on CA*, we see that f(cA, ) must in gener- 
al depend on LA*A* and LA, A . In addition, by the 
same argument, the conductivity correlation factor 
contained in U0A • , depends only on L A , A , .  For def- 
initeness we will refer to this latter conductivity cor- 
relation factor as sO, (CA,) , i.e. 

u°,=qA.rX2s°./2gT, qA=0. (11) 

We note of course that 

sO, = f 0 ,  CA* -+ 0 (12) 

and 

S0A * = f I '  CA = 0 ,  (13) 

where in the latter case U0A • = tLA,. 

Finally, it is worth noting that in the one dimen- 
sional case with self-blocking between the ions it is 
known that f =  0 (for CA, -* 0) [17,18]. The exis- 
tence of eq. (7) implies that the tracer mobility, uO,, 
is also zero under the same conditions. 

3. Monte Carlo simulation of conductivity correlation 
factors 

Our goal is to calculate f(cA, ) and sO, (CA,). The 
calculation centers on the determination Of LA,A, 
and LA, A. We already have an expression relating 
uO, (and therefore sO*) to LA,A, , see eq. (6). In a 
similar "thought experiment" leading to eq. (6) let us 
calculate the flux of A* when only the A atoms carry 
a charge. This is a tracer flux arising from an indirect 
force and contains the very essence of the meaning of 
the cross phenomenological coefficient LA, A . Follow- 
ing the same procedure as described in ref. [14] we 
fred that the corresponding dc tracer mobility, which 
we will call uX,,  is given by 

qALA*A 
U'A* - Ncg,  , qA* =0"  (14) 

The conductivity correlation factor contained in uX, 
I will be symbolized by SA,. 

For convenience, we can simulate both "thought 
experiments" simultaneously by calculating u ° ,  and 
u~,  i.e., calculate the fluxes of A* and A with qA = 0 
and, in the case ofuX change the symbol A to A* to 
obtain u~,, noting, of course, that LA, A = LAA,. 

On combining eqs. (2), (6) and (11) and thereby 
eliminating LA,A, and LA, A we have that 

CA qA 

In passing we note that eq. (15) could be considered 
another Nemst-Einstein-like equation. 

The conductivity correlation factors sO, and s~, 
are related to the corresponding tracer drift distances 
in the field by the following definitions 

sO*=2kT(XOA*)[qA*Exnx, A , k  2, q A = 0 ,  (16a) 

S~* t 2 = 2kT(XA*)/qAExnx, A* ~ , qA* = 0 ,  (16b) 

where the (X) are the tracer drift distances in the field 
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E x in time t and nx, A* is the number of  jumps that 
would occur in the absence of the field. The drifts are 
related to the respective tracer mobilities by 

UOA * = (XOA,) /Ex  t , (17a) 

U'A, = (X 'A, )[Ext  . (17b) 

Combining eqs. (8), (15), (16a,b) and (17a,b) we 
have that 

f=sOA * CA* sk* . (18) 
CA 

This is a general relation, valid for 0 < CA, ~ 1 -- Cv,  
between the tracer correlation factor and the conduc- 
tivity correlation factors sO, and s~, .  Calculation of 
sO, and s~, as functions of CA, permits the calcula- 
tion off(cA,  ) . 

In our calculations we examined (1) the square 
planar lattice (100 X 100) with a single vacancy and 
a random distribution of A* and A, and (2) the same 
lattice but with 50% occupation by vacancies again 
with a random distribution of A* and A. In both 
cases fI is equal to unity [6] : we have chosen this 
case for convenience in the present discussion. The 
procedure to simulate ionic conductivity in an electric 
field has been documented in detail [19] and need 
not be repeated here• 

4. Results and discussion 

In fig. 1 we give results for the calculation of sO, 
and s~, as functions of CA, in the square planar lat- 
tice with a single vacancy. It is clear that in this mod- 
el both quantifies exhibit simple linear dependence 

? 
on CA,. In the case ofsA, the results extrapolate to 
1 - - f0  when CA, -+ 0. Upon forming the tracer corre- 
lation factor [eq. (18)] we fred that fdoes  no t  in fact 
depend on CA,. 

In fig. 2 we give similar results for sO, and s~, this 
time in the square planar lattice with 50% vacancies. 
Again in the case of s ° ,  the results extrapolate t o f  0 
(~0.712 Tahir-Kheli and E1-Meshad [20]) when 
CA, -+ 0 while results for s~* extrapolate to 1 - fO. 
Again upon formingfwith eq. (18) we Fred t h a t f  
does no t  depend on CA,. 

Depending on one's intuition this independence of 
CA* by f i s  perhaps a somewhat surprising result. Sato 
[ 11 ] claims that this behaviour is a result of the appli- 

O 8-- J 
. \  - 

,< o.s = 

o,~,o J 

Oo o! o!, o!, o, o, o 
co 

Fig. 1. The correlation factors s~, and s ) ,  plotted as func- 
tions of cA, for the square planar lattice (100 X 100) with 
a single vacancy. 

cation of the Gibbs-Duhem relation. He maintains 
that this relation does not necessarily hold rigorously 
under the nonequilibrium condition pertaining to dif- 
fusion processes. In particular, the relation imposes a 
very strong restriction on the driving forces which is 
manifested by the fact that the motion of A* atoms 
is always compensated by the motion of A atoms (see 
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c A . 

• 0 Fig. 2. The correlation factors SA* and s~, as functions 
of CA, for the square planar lattice (100 X 100) with 50% 
vacancies. 
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also ref. [23]). Because of  this, the condition actually 
leads to the evaluation only of  the diffusive behaviour 
o f  a single atom. Since the above problem apparently 
could be associated with eq. (2), one would like to cal- 
culate DA, ,  i.e. f ,  from a purely Fickian definition of  
DA, .  In a different context from the present one this 
was in fact done by Murch and Thorn [21 ], and in 
such a way that the tracer concentration was quite 
high. No deviation from fO was observed so we must 
conclude that for this m o d e l f  does not depend on 
CA, whether or not the Gibbs-Duhem relation is ri- 
gorously enforced. 

Sato [11] also discusses a tracer correlation factor 
which evidently is the same as our sO,. In effect, Sato 
converts uO, to a new tracer diffusion coefficient DO,  
by means of  a quasi Nernst-Einstein equation 

u°,/D°,=qA,/kT, qA=0,  (19) 

which he assumes to be valid for all CA,. As we have 
seen, it is valid for CA, - '  0 [eq. (7)]. Accordingly, 
sO, now appears as 

o ° ,  = r'x2s°,/2, (20) 

and is an apparent tracer correlation factor. At the 
limits o f  CA, --, 0 and CA, = 1 -- c v ,  sO, connects (lin- 
early in our model as it turns o u t ) f t o f i  as a function 
of  CA,. It should be noted that DA,0 does not have a 
Fickian meaning nor does eq. (19) have a proof ex- 
cept as we have seen, for CA, -~ 0. In a general sense, 
eq. (19) should be classified as a def'mition which pro- 
rides a means for converting a mobility to a dimen- 
sionally correct diffusion coefficient. Thus DO,  is, in 
a Fickian sense, a hypothetical tracer diffusion coeffi- 
cient: its tracer correlation factor sO, happens also to 
be the conductivity correlation factor o f  an assembly 
o f  charged tracer ions drifting in a neutral host. Inter- 
estingly, DA,  , because o f  its association only with 
LA,A,  (eqs. (11) and (14)) can also be related in the 
usual way to the self-correlation function obtainable 
from quasi-elastic neutron scattering etc. (see ref. 
[22]). The Monte Carlo calculation of  sO, (andf l )  
from the self correlation function and related matters 
will be studied in a later paper. 

5. Conclusions 

We have explored the link between f and f l  by 
means o f  CA,. We have shown that f ,  as usually inter- 

preted, does not depend on CA, and does not  itself 
provide a useful link. On the other hand, one can de- 
fine a hypothetical tracer correlation factor which de- 
pends on LA,A,  only (eq. (11)) and which provides a 
linear link (for our model) be tweenf  and f i .  This tracer 
correlation factor is also the conductivity correlation 
factor o f  an assembly of  charged tracer ions moving 
in a neutral host. 
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