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II is shown that most models cannot explain the broad dielectric loss peaks and the correlation 
between dicletric loss and dc conductivity, which are both universal features of glass ionic 
conductivily. However. these features are reproduced by StewIs and Taylor’s old “random 
potential energy model” as is shown from a recent approximate solution of the model. 11 is argued 
that experimental data should preferably be prcscnted in terms of the frequency-dependent 
conductivity instead of as dielectric loss. 

1. Introduction 

Despite several years of research the mechanism of glass ionic conductivity 
is still not understood (some reviews of the subject are found in refs. [l-7]). In 
ionic conductive glasses one always observes both dc conductivity and dielec- 
tric relaxation. It is very interesting that these two phenomena are correlated, 
an observation of seemingly universal validity. If o(O) denotes the dc conduc- 
tivity, Barton, Nakajima and Namikawa (BNN) discovered [8.9,10] that most 
glasses obey 

a(o) =pco Am+,,, (1) 
where et, is the vacuum permittivity, AC is the relaxation strength, w, is the 
loss peak frequency, and p is a temperature-independent numerical constant 
of order one. We remind that in media with a non-zero dc conductivity, the 
complex dielectric constant e * = c’ - ic” is defined [4] by 

q)c*( cd) = U(W) -do) 
iw ’ 

where w is the angular frequency and u = u’ + iu ” is the frequency-dependent 
conductivity. 

Equation (1) will be referred to as the BNN-relation. In particular it implies 
that u(O) and w, have the same activation energy. This was actually dis- 
covered before the BNN-relation, demonstrating that the dielectric relaxation 
is due to ionic motion [ll]. The correlation between u(O) and ~,,Azw,,, is 
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Fig. 1. Test ol the BNN-relation for several glasses (reproduced from ref. [9]). Now that 
2 VI”, = W”,. 

examined for several glasses in fig. 1 which is reproduced from ref. [9]. It is 
clear that most glasses have a p-value of order one. The BNN-relation is thus 
experimentally very well-founded. 

There is little doubt that the BNN-relation provides a key to a deeper 
understanding of ionic conductivity in glasses. Another observation of general 
validity is the very broad dielectric loss peaks. In this paper it will be shown 
that most current models for the BNN-relation are inconsistent with broad 
loss peaks. In contrast, one of the oldest and simplest models works much 
better. This is Stevels’ and Taylor’s “ random potential energy model” 12,121. 
In this model, the loss peak frequency is simply the minimum ion jump 
frequency and the proportionality between o(O) and o, therefore becomes 
physically obvious. 

2. Critique of current models for the BNN-relation 

Tomozawa has reviewed the most important models for the BNN-relation 
[l]. Three models predict simple Debye relaxation, namely Isard’s, Charles’ 



and Nakajima’s model. In Isard’s model the dielectric relaxation is assumed to 
be due to glass inhomogeneities which may derive e.g. from phase separation. 
If the different phases have different dc conductivity. dielectric relaxation of 
the bulk glass will result [13]. In Charles’ model of alkali ionic conductivity in 
oxide glasses. the dielectric relaxation is due to defect jumps where a defect is 
defined as a non-bridging oxygen atom surrounded by two alkali ions [14]. 
Finally, Nakajima has proposed a model for the BNN-relation which assumes 
that the ions are forced to follow certain random zig-zag paths frozen in the 
glass [9]. 

Each of these three models predicts Debye relaxation. In order to reproduce 
the observed broad dielectric loss peaks it is customary to introduce a 
distribution of relaxation times. This procedure does not work, however, for 
models for the BNN-relation. The reason is the following. Dielectric relaxation 
implies that the real part of the conductivity, u’(o). is an increasing function 
of frequency. Suppose we consider Debye relaxation with relaxation time T. 
The increase in conductivity from low to high frequencies. Au, is then easily 
found from eq. (2): 

Au = QAw’. (3) 
The dielectric loss peak frequency is equal to 7-l. so from eqs. (1) and (3) one 
finds 

Au = $0(O). 

Since u’(w) is monotonically increasing we therefore have 

u’(0) < (1 +p-‘)0(O) (5) 
which is valid for all frequencies. Now, if the dielectric relaxation is assumed 
to be a sum of elementary Debye processes each of which satisfies the 
BNN-relation, the resulting conductivity will still obey eq. (5) with a p of 
order one. But this is inconsistent with experiment because the broad loss 
peaks imply that u’(w) > u(O) whenever w >> w,. 

The only way to save the models is to assume that the dc conductivities do 
~r~r simply add algebraically. Actually, this may quite likely be the case. But 
then a whole new theory is needed for calculating u(O) and one may question 
the relevance of starting out with Debye processes each of which satisfies the 
BNN-relation. In conclusion, this procedure does not seem to work and one 
must look for a model which from the very beginning incorporates a broad 
distribution of relaxation times. 

Tomozawa has proposed a model [l] based on Debye’s and Falkenhagen’s 
old theory of ionic solutions. This model is interesting because it has a broader 
loss peak than simple Debye relaxation. Still, the model predicts an excess 
conductivity, Au, of the same order of magnitude as u(O). This means that the 
loss peak is far from broad enough, and if it is attempted to add several 
“Tomozawa” relaxation processes with different relaxation times one runs 
into the same problems as above. 



A model which predicts a very broad dielectric loss peak is Doremus’ model 
which is based on the space charge mechanism [5]. This model has e”(o) a 
u-‘/’ as w + co and a loss peak frequency which is related to the dc 
conductivity. However, because of the very nature of the model, the magnitude 
of the dielectric loss depends on sample dimensions while the BNN-relation is 
a true bulk property. Therefore, Doremus’ model can not explain the BNN-re- 
lation [l]. 

Stevels’ and Taylor’s “random potential energy model” [2,12] is the oldest 
model. In the next section it will be shown that this model is able to explain 
both the BNN-relation and the broad loss peaks. 

3. The random potential energy model 

In this model it is assumed that the ions feel a more or less random 
potential energy deriving from the random network structure of the glass. An 
ion spends most time at potential energy minima, but occasionally it gains 
energy by thermal fluctuations to pass the energy barrier which separates 
adjacent potential energy minima. The ion jump frequency, y, depends on the 
energy barrier, A E, as 

y=yoexp(--AE/RT), 

where y,, is the attempt frequency (usually = lo’? Hz), k is the Boltzmann 
constant and T is the temperature. Because of the randomness of the potential 
energy surface all energy barriers are equally likely, so from eq. (6) it is 
concluded that the jump frequency probability distribution, p(y), varies as 
y-i. If the ions can jump to more that one nearest-neighbour energy mini- 
mum, the resulting p(y) changes only insignificantly from y-’ [15]. The 
present treatment of Stevels’ and Taylor’s mode1 is based on this simple jump 
frequency probability distribution. In normalized form it is given by 

P(Y)=&+7 Ymin<Y<Ymax 

where two cut-off’s, ymin and y,, have been introduced, and X = ymax/ymin. 
The existence of ymin in real glasses is obvious: if y&” = 0 a zero dc 
conductivity results. On the other hand, experimentally there is no sign of any 
maximum jump frequency so y,,, should be put equal to ya. In order to 
calculate a(w) we use the CTRW approximation in which the conductivity is 
given [17,21] by 

o(u)=K[ -ia+( &)-I], 

where K is a constant (depending on charge carrier concentration, average 



jump distance, temperature, etc), and ( ) denotes the average over the jump 
frequency probability distribution. Calculating this average one finds 

The limit of interest in experiments is when w +z uO and ymi, -=K ~a. In this 
case the second term dominates and we get 

U(W) = 
K In h iw 

In(l + iw/ymi,) 

Expressing K In A in terms of the dc conductivity we finally find [15,16] 

u(w) = o(0) 
io7 

ln(1 + iw7) ’ 

(10) 

(11) 

where 

7=ymi;. (12) 
Equation (11) does not, of course, include the contribution to the conduc- 

tivity from the high-frequency dielectric constant E,. Substituting now eq. (11) 
into eq. (2) we get 

co de = fur, 03) 
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Fig. 2. Model prediction for the dielectric loss (full curve) and experimental data from a typical 
sodium-silicate glass (data taken from ref. [4]). The dashed curve is the Debye dielectric loss peak. 



and for the dielectric loss 

c”(w) = 2 Ar 
arctan( 07) 

(In/-)’ + (arctan( UT))’ 1 ’ 
(14) 

From eq. (14) the loss peak frequency can easily be determined numerically. It 
is given by w,,,T = 4.71 which corresponds to a p-value of the BNN-relation of 

p = 0.42. (15) 

Since 0.42 is a numerical constant of order one, the BNN-relation is satisfied 
by the random potential energy model. 

The model predicts a very broad dielectric loss peak as is clear from fig. 2. 
In this figure the model prediction is compared to experimental data from a 
typical sodium-silicate glass. There is a qualitative agreement between theory 
and experiment. 

4. Discussion 

The derivation of eq. (11) makes use of a number of simplifying assump- 
tions: (1) All ion-ion interactions are ignored, (2) all energy barriers are 
assumed to be equally likely in the interval from zero to a sharply defined 
maximum energy barrier, and (3) the model is solved within the CTRW 
approximation which is the simplest possible non-trivial mean-field approxi- 
mation for calculating a(w) in random media. The validity of these approxi- 
mations will not be critically examined here. One point is perhaps worth 
noting. The present use of the CTRW approximation is formally equivalent to 
the electric modulus approach of Macedo, Moynihan and Bose [18]. The 
physical interpretation of this analogy is not quite clear at present [16.19]. One 
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Fig. 3. Equivalent circuit ol the CTRW approximation in the y. + cc limit (reproduced from rcl. 
[16]). The circuit was suggested by Macedo. Moynihan and Bose in their clcctric modulus 
approach towards glass ionic conductivity [1X]. The case which gives eq. (11) corresponds to the 
resistance probability distribution p( R,,) a R,;'. This distribution is logarithmic just as the 
ordinary resistance scale so in this case it is easy to actually build the electrical equivalent circuit 

in the laboratory. 



possibility is that the electrical equivalent circuit of ref. [18] (shown in fig. 3) 
reflects a onedimensional character for conduction processes in glasses [I9]. 
Usually, however, the electric modulus approach is regarded as the relevant 
description when irthomogeireiries are present, i.e. as a generalization of Isard’s 
model [16,18]. Note that because of the analogy to the CTRW, if the 
inhomogeneities have dc conductivities with a probability distribution p( o(O)) 
a o(O)-‘, the bulk frequency-dependent conductivity is again given by eq. 
(11). We thus reach the interesting conclusion that as regards electrical 
properties, the random potential energy model is indistinguishable from a 
generalized Isard model. 

For a number of years it has been thought that the random-potential energy 
model, while appealing, cannot possibly be correct [1.6]. The BNN-relation 
implies that the activation energies of o(O) and w, are equal, and this has 
been interpreted as implying that the ac conductivity must be due to ion jumps 
with the same activation energy as the dc conductivity. The argument is 
incorrect, however. As is clear from the preceding section, while the activation 
energy of o(O) is certainly equal to that of y,,,;, (a a,,), there is absolutely no 
problem with having larger jump frequencies involved in the conduction 
process, corresponding to smaller energy barriers. Another common objection 
to Stevels’ and Taylor’s model is- that no model based on a distribution of 
energy barriers can predict a loss peak with a temperature-independent shape. 
This is wrong; in the present model the dielectric loss is given by eq. (14) for 
all temperatures and therefore the shape of the loss peak in a log-log plot 
indeed is temperature-independent. 

Glass ionic conductivity data are often presented in terms of the dielectric 
loss when the frequency dependence is discussed. However, because dc con- 
ductivity and dielectric loss are both due to ionic motion, the subtraction of 
u(O) in eq. (2) has little physical justification. Certainly, dc conductivity and 
dielectric loss are distinguishable from a macroscopic point of view: The 
dielectric loss contributes to the dielectric polarization which displacements 
are recoverable on removal of the field in contrast to the dc conductivity 
displacements. But this fact does not have a simple microscopic interpretation. 
Specifically, in the random potential energy model (and in real glasses, too!) it 
is impossible to tell which ion jumps contribute to the dielectric polarization 
and which contribute to the dc conductivity. This dilemma is old and 
well-known. It derives from the fact that it is not possible to distinguish 
between bound and free charges in ac electric fields [20]. 

Because the subtraction of u(O) in the definition of the dielectric loss is 
unphysical in the sense of having no microscopic justification, experimental 
data should, in the author’s opinion, preferably be presented in terms of the 
real part of the conductivity. As an example, in fig. 4 the data of fig. 2 are 
shown together with model predictions (eq. (11)). A number of important 
features of glass ionic conductivity become immediately clear when data are 
presented this way. The characteristic frequency which marks the onset of ac 
conductivity is just the dielectric loss peak frequency. On a time-scale larger 
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Fig. 4. Model prediction for the real part of the conductivity (full curve) and the experimental 
data of fig. 2. For the data points, the conductivity has been calculated assuming p = 1 in the 
BNN-relation and utilizing the Kramers-Kronig relation for calculating AC ( = 3.7.r’,,,,). The 

characteristic time T is a fitting parameter for the data points in this figure. 

than w; ‘, a(w) is frequency-independent so the glass “looks” homogeneous to 
the ions. On a time scale smaller than w;‘, a(w) is strongly frequency-depen- 
dent. The obvious physical interpretation is that w, is the minimum ion jump 
frequency; then many jumps must be involved for times Z+ w;‘. In order to 
account for the strong increase of a’(w) for o > w,, jump frequencies much 
larger than w, must however also be present in the glass. The random 
potential energy model has exactly these features. In this model a wide range 
of jump frequencies is present, deriving from a range of activation energies. 

The spread in activation energies in Stevels’ and Taylor? model is not an 
arbitrary postulate. On the contrary, it is a simple fact which follows im- 
mediately when experiments are presented in terms of the frequency-depen- 
dent conductivity in a log-log plot as in fig. 4 but without the normalization. 
The shape of the conductivity curve is always temperature-independent. 
Because of the BNN-relation, when the temperature changes the conductivity 
curve is simply displaced in the direction 45’ to the positive x- and y-axis. It 
is now clear by inspection that the ac conductivity indeed has a smaller 
activation energy than the dc conductivity. And from the curvature of the 
conductivity curve it can be concluded that actually a whole range of activa- 
tion energies must be involved. Thus, the experimental facts themselves 
apparently force one to adopt Stevels’ and Taylor’s approach and base the 
theory of glass ionic conductivity on a distribution of energy barriers. 
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5. Conclusions 

Most current models of glass ionic conductivity cannot explain both the 
BNN-relation and the observed broad dielectric loss peaks. On the other hand, 
the random potential energy model is rather successful. This model involves 
no ad hoc assumptions and we believe it captures the essential physics of glass 
ionic conductivity. The model is based on a fact which can be deduced directly 
from experiment when presented in terms of the frequency-dependent conduc- 
tivity, namely the existence of a distribution of energy barriers. The BNN-rela- 
tion is satisfied by the model. Here, the relation is nothing but the statement 
that the dc conductivity is proportional to the minimum ion jump frequency. 
This proportionality is by no means surprising because the jump frequency 
distribution eq. (7) strongly emphasizes the smallest jump frequencies which 
are also the most important for a(O) because they partially act as traps. In 
addition to the BNN-relation, the model also reproduces the observed broad 
asymmetric loss peaks, the temperature independence of the loss peak shape, 
and the almost frequency-independent dielectric loss as w + co. These are all 
well-known characteristics of glass ionic conductivity [1,4]. The quantitative 
model predictions are not entirely successful, though (figs. 2 and 4). This is 
undoubtedly because it is too simple to regard all energy barriers as equally 
likely. Refinements of the model must make use of a more realistic energy 
barrier distribution. Admittedly, this introduces a temperature dependence 
into the loss peak shape, but in many cases the effect is only weak and still 
consistent with experiment. The real challenge for the future is to make a 
coherent theory in which the energy barrier distribution is correlated to the 
glass structure and conditions of glass formation. 
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